Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ift
NIFTy
Commits
39e7ec15
Commit
39e7ec15
authored
Aug 18, 2017
by
Theo Steininger
Browse files
Fixed generate_posterior_sample. Adapted critical_filtering.py
parent
47a35227
Changes
2
Show whitespace changes
Inline
Side-by-side
demos/critical_filtering.py
View file @
39e7ec15
...
@@ -117,9 +117,9 @@ if __name__ == "__main__":
...
@@ -117,9 +117,9 @@ if __name__ == "__main__":
convergence_level
=
1
,
convergence_level
=
1
,
iteration_limit
=
5
,
iteration_limit
=
5
,
callback
=
convergence_measure
)
callback
=
convergence_measure
)
minimizer2
=
VL_BFGS
(
convergence_tolerance
=
1e-
4
,
minimizer2
=
VL_BFGS
(
convergence_tolerance
=
1e-
10
,
convergence_level
=
1
,
convergence_level
=
1
,
iteration_limit
=
2
0
,
iteration_limit
=
3
0
,
callback
=
convergence_measure
,
callback
=
convergence_measure
,
max_history_length
=
20
)
max_history_length
=
20
)
minimizer3
=
SteepestDescent
(
convergence_tolerance
=
1e-4
,
minimizer3
=
SteepestDescent
(
convergence_tolerance
=
1e-4
,
...
...
nifty/sugar.py
View file @
39e7ec15
...
@@ -111,10 +111,12 @@ def generate_posterior_sample(mean, covariance):
...
@@ -111,10 +111,12 @@ def generate_posterior_sample(mean, covariance):
power
=
S
.
diagonal
().
power_analyze
()
**
.
5
power
=
S
.
diagonal
().
power_analyze
()
**
.
5
mock_signal
=
power
.
power_synthesize
(
real_signal
=
True
)
mock_signal
=
power
.
power_synthesize
(
real_signal
=
True
)
noise
=
N
.
diagonal
(
bare
=
True
)
.
val
noise
=
N
.
diagonal
(
bare
=
True
)
mock_noise
=
Field
.
from_random
(
random_type
=
"normal"
,
domain
=
N
.
domain
,
mock_noise
=
Field
.
from_random
(
random_type
=
"normal"
,
domain
=
N
.
domain
,
std
=
sqrt
(
noise
),
dtype
=
noise
.
dtype
)
dtype
=
noise
.
dtype
)
mock_noise
*=
sqrt
(
noise
)
mock_data
=
R
(
mock_signal
)
+
mock_noise
mock_data
=
R
(
mock_signal
)
+
mock_noise
mock_j
=
R
.
adjoint_times
(
N
.
inverse_times
(
mock_data
))
mock_j
=
R
.
adjoint_times
(
N
.
inverse_times
(
mock_data
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment