diff --git a/demos/critical_filtering.py b/demos/critical_filtering.py index 60cab0f6f3c18ba605ddaca5fff4d1c3bb81ef3e..79d445882b0bb9203a884fcfc841c73f69394880 100644 --- a/demos/critical_filtering.py +++ b/demos/critical_filtering.py @@ -117,9 +117,9 @@ if __name__ == "__main__": convergence_level=1, iteration_limit=5, callback=convergence_measure) - minimizer2 = VL_BFGS(convergence_tolerance=1e-4, + minimizer2 = VL_BFGS(convergence_tolerance=1e-10, convergence_level=1, - iteration_limit=20, + iteration_limit=30, callback=convergence_measure, max_history_length=20) minimizer3 = SteepestDescent(convergence_tolerance=1e-4, diff --git a/nifty/sugar.py b/nifty/sugar.py index 3048cc58300d9f44d6799ac23bcc711fbd4f158f..3a77bfcb95d754eb18f92d663fb598da01d25084 100644 --- a/nifty/sugar.py +++ b/nifty/sugar.py @@ -111,10 +111,12 @@ def generate_posterior_sample(mean, covariance): power = S.diagonal().power_analyze()**.5 mock_signal = power.power_synthesize(real_signal=True) - noise = N.diagonal(bare=True).val + noise = N.diagonal(bare=True) mock_noise = Field.from_random(random_type="normal", domain=N.domain, - std=sqrt(noise), dtype=noise.dtype) + dtype=noise.dtype) + mock_noise *= sqrt(noise) + mock_data = R(mock_signal) + mock_noise mock_j = R.adjoint_times(N.inverse_times(mock_data))