@@ -13,15 +13,16 @@ There is a full toolbox of methods that can be used, like the classical approxim

.. tip:: *In-a-nutshell introductions to information field theory* can be found in [2]_, [3]_, [4]_, and [5]_, with the latter probably being the most didactically.

.. [1] T.A. Enßlin et al. (2009), "Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis", PhysRevD.80.105005, 09/2009; `arXiv:0806.3474 <http://www.arxiv.org/abs/0806.3474>`_

.. [1] T.A. Enßlin et al. (2009), "Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis", PhysRevD.80.105005, 09/2009; `[arXiv:0806.3474] <http://www.arxiv.org/abs/0806.3474>`_

.. [2] T.A. Enßlin (2013), "Information field theory", proceedings of MaxEnt 2012 -- the 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering; AIP Conference Proceedings, Volume 1553, Issue 1, p.184; `arXiv:1301.2556 <http://arxiv.org/abs/1301.2556>`_

.. [2] T.A. Enßlin (2013), "Information field theory", proceedings of MaxEnt 2012 -- the 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering; AIP Conference Proceedings, Volume 1553, Issue 1, p.184; `[arXiv:1301.2556] <http://arxiv.org/abs/1301.2556>`_

.. [3] T.A. Enßlin (2014), "Astrophysical data analysis with information field theory", AIP Conference Proceedings, Volume 1636, Issue 1, p.49; `arXiv:1405.7701 <http://arxiv.org/abs/1405.7701>`_

.. [3] T.A. Enßlin (2014), "Astrophysical data analysis with information field theory", AIP Conference Proceedings, Volume 1636, Issue 1, p.49; `[arXiv:1405.7701] <http://arxiv.org/abs/1405.7701>`_

.. [4] Wikipedia contributors (2018), `"Information field theory" <https://en.wikipedia.org/w/index.php?title=Information_field_theory&oldid=876731720>`_, Wikipedia, The Free Encyclopedia.

.. [5] T.A. Enßlin (2019), "Information theory for fields", accepted by Annalen der Physik; `arXiv:1804.03350 <http://arxiv.org/abs/1804.03350>`_

.. [5] T.A. Enßlin (2019), "Information theory for fields", accepted by Annalen der Physik; `[DOI] <https://doi.org/10.1002/andp.201800127>`_, `[arXiv:1804.03350] <http://arxiv.org/abs/1804.03350>`_

Discretized continuum

---------------------

...

...

@@ -103,7 +104,6 @@ and the measurement equation is linear in both signal and noise,

with :math:`{R}` the measurement response, which maps the continous signal field into the discrete data space.

This is called a free theory, as the information Hamiltonian

associate professor

.. math::

...

...

@@ -135,7 +135,7 @@ the posterior covariance operator, and

j = R^\dagger N^{-1} d

the information source. The operation in :math:`{d= D\,R^\dagger N^{-1} d}` is also called the generalized Wiener filter.

the information source. The operation in :math:`{m = D\,R^\dagger N^{-1} d}` is also called the generalized Wiener filter.

NIFTy permits to define the involved operators :math:`{R}`, :math:`{R^\dagger}`, :math:`{S}`, and :math:`{N}` implicitely, as routines that can be applied to vectors, but which do not require the explicit storage of the matrix elements of the operators.

**NIFTy** [1]_, "\ **N**\umerical **I**\nformation **F**\ield **T**\heor\ **y**\ ", is a versatile library designed to enable the development of signal inference algorithms that are independent of the underlying spatial grid and its resolution.

**NIFTy** [1]_, [2]_, "\ **N**\umerical **I**\nformation **F**\ield **T**\heor\ **y**\ ", is a versatile library designed to enable the development of signal inference algorithms that are independent of the underlying spatial grid and its resolution.

Its object-oriented framework is written in Python, although it accesses libraries written in C++ and C for efficiency.

NIFTy offers a toolkit that abstracts discretized representations of continuous spaces, fields in these spaces, and operators acting on fields into classes.

...

...

@@ -13,7 +13,9 @@ The set of spaces on which NIFTy operates comprises point sets, *n*-dimensional

References

----------

.. [1] Steininger et al., "NIFTy 3 - Numerical Information Field Theory - A Python framework for multicomponent signal inference on HPC clusters", 2017, submitted to PLOS One; `[arXiv:1708.01073] <https://arxiv.org/abs/1708.01073>`_

.. [1] Selig et al., "NIFTY - Numerical Information Field Theory. A versatile PYTHON library for signal inference ", 2013, Astronmy and Astrophysics 554, 26; `[DOI] <https://ui.adsabs.harvard.edu/link_gateway/2013A&A...554A..26S/doi:10.1051/0004-6361/201321236>`_, `[arXiv:1301.4499] <https://arxiv.org/abs/1301.4499>`_

.. [2] Steininger et al., "NIFTy 3 - Numerical Information Field Theory - A Python framework for multicomponent signal inference on HPC clusters", 2017, accepted by Annalen der Physik; `[arXiv:1708.01073] <https://arxiv.org/abs/1708.01073>`_