diff --git a/nifty6/library/correlated_fields.py b/nifty6/library/correlated_fields.py index 4f5932240159997f8bdd051757ac36585f1c4e38..9955bb1b7253dd6ca3b7ea3fbab9ad297886482b 100644 --- a/nifty6/library/correlated_fields.py +++ b/nifty6/library/correlated_fields.py @@ -18,6 +18,7 @@ import numpy as np +from ..logger import logger from ..domain_tuple import DomainTuple from ..domains.power_space import PowerSpace from ..domains.unstructured_domain import UnstructuredDomain @@ -501,7 +502,7 @@ class CorrelatedFieldMaker: mean = sc.mean.to_global_data() stddev = sc.var.sqrt().to_global_data() for m, s in zip(mean.flatten(), stddev.flatten()): - print('{}: {:.02E} ± {:.02E}'.format(kk, m, s)) + logger.info('{}: {:.02E} ± {:.02E}'.format(kk, m, s)) def moment_slice_to_average(self, fluctuations_slice_mean, nsamples=1000): fluctuations_slice_mean = float(fluctuations_slice_mean) diff --git a/nifty6/sugar.py b/nifty6/sugar.py index c60970bca17ab412d2e6a3be4062cf8009c744bb..21bbfa28ecfaca5fc26afa5417ae23b926d24fe3 100644 --- a/nifty6/sugar.py +++ b/nifty6/sugar.py @@ -20,6 +20,7 @@ from time import time import numpy as np +from .logger import logger from . import dobj, utilities from .domain_tuple import DomainTuple from .domains.power_space import PowerSpace @@ -462,46 +463,46 @@ def exec_time(obj, want_metric=True): if isinstance(obj, Energy): t0 = time() obj.at(0.99*obj.position) - print('Energy.at():', time() - t0) + logger.info('Energy.at(): {}'.format(time() - t0)) t0 = time() obj.value - print('Energy.value:', time() - t0) + logger.info('Energy.value: {}'.format(time() - t0)) t0 = time() obj.gradient - print('Energy.gradient:', time() - t0) + logger.info('Energy.gradient: {}'.format(time() - t0)) t0 = time() obj.metric - print('Energy.metric:', time() - t0) + logger.info('Energy.metric: {}'.format(time() - t0)) t0 = time() obj.apply_metric(obj.position) - print('Energy.apply_metric:', time() - t0) + logger.info('Energy.apply_metric: {}'.format(time() - t0)) t0 = time() obj.metric(obj.position) - print('Energy.metric(position):', time() - t0) + logger.info('Energy.metric(position): {}'.format(time() - t0)) elif isinstance(obj, Operator): want_metric = bool(want_metric) pos = from_random('normal', obj.domain) t0 = time() obj(pos) - print('Operator call with field:', time() - t0) + logger.info('Operator call with field: {}'.format(time() - t0)) lin = Linearization.make_var(pos, want_metric=want_metric) t0 = time() res = obj(lin) - print('Operator call with linearization:', time() - t0) + logger.info('Operator call with linearization: {}'.format(time() - t0)) if isinstance(obj, EnergyOperator): t0 = time() res.gradient - print('Gradient evaluation:', time() - t0) + logger.info('Gradient evaluation: {}'.format(time() - t0)) if want_metric: t0 = time() res.metric(pos) - print('Metric apply:', time() - t0) + logger.info('Metric apply: {}'.format(time() - t0)) else: raise TypeError