diff --git a/demos/critical_filtering.py b/demos/critical_filtering.py index 4e96544086c60a1de8efa6ba0459ef62e060bb31..d37984f401d61768efcf3bed5e2b354601e4455c 100644 --- a/demos/critical_filtering.py +++ b/demos/critical_filtering.py @@ -51,7 +51,7 @@ if __name__ == "__main__": data_power = ift.log(ift.power_analyze(fft.adjoint_times(d), binbounds=p_space.binbounds)) d_data = d.val - ift.plotting.plot(d, name="data.png") + ift.plot(d, name="data.png") IC1 = ift.GradientNormController(verbose=True, iteration_limit=100, tol_abs_gradnorm=0.1) @@ -90,5 +90,5 @@ if __name__ == "__main__": # Plot current estimate ift.dobj.mprint(i) - if i % 5 == 0: - ift.plotting.plot(fft(m0), name='map.png') + if i % 50 == 0: + ift.plot(fft(m0), name='map.png') diff --git a/demos/log_normal_wiener_filter.py b/demos/log_normal_wiener_filter.py index 94a79a52ef0cf9f67a6a591d8251f0eb05f60b93..87563debbfae8a130727a7f2aaa9673ee30fb759 100644 --- a/demos/log_normal_wiener_filter.py +++ b/demos/log_normal_wiener_filter.py @@ -68,14 +68,13 @@ if __name__ == "__main__": # Plotting plotdict = {"xlabel": "Pixel index", "ylabel": "Pixel index", "colormap": "Planck-like"} - ift.plotting.plot(mock_signal, name="mock_signal.png", **plotdict) + ift.plot(mock_signal, name="mock_signal.png", **plotdict) logdata = np.log(ift.dobj.to_global_data(data.val)).reshape(signal_space.shape) - ift.plotting.plot(ift.Field(signal_space, - val=ift.dobj.from_global_data(logdata)), - name="log_of_data.png", **plotdict) - # ift.plotting.plot(m1,name='m_LBFGS.png', **plotdict) - ift.plotting.plot(m2, name='m_Newton.png', **plotdict) - # ift.plotting.plot(m3, name='m_SteepestDescent.png', **plotdict) + ift.plot(ift.Field(signal_space, val=ift.dobj.from_global_data(logdata)), + name="log_of_data.png", **plotdict) + # ift.plot(m1,name='m_LBFGS.png', **plotdict) + ift.plot(m2, name='m_Newton.png', **plotdict) + # ift.plot(m3, name='m_SteepestDescent.png', **plotdict) # Probing the variance class Proby(ift.DiagonalProberMixin, ift.Prober): @@ -85,4 +84,4 @@ if __name__ == "__main__": sm = ift.FFTSmoothingOperator(signal_space, sigma=0.02) variance = sm(proby.diagonal.weight(-1)) - ift.plotting.plot(variance, name='variance.png', **plotdict) + ift.plot(variance, name='variance.png', **plotdict) diff --git a/demos/nonlinear_critical_filter.py b/demos/nonlinear_critical_filter.py index 2d9e092f7dcf12cd9edb54b3b53c4e7a5696e2ae..7feef7420d90a66f0c4903e5aea20e3fb0e65031 100644 --- a/demos/nonlinear_critical_filter.py +++ b/demos/nonlinear_critical_filter.py @@ -110,7 +110,7 @@ if __name__ == "__main__": # excitation monopole to 1 m0, t0 = adjust_zero_mode(m0, t0) - ift.plotting.plot(true_sky) - ift.plotting.plot(nonlinearity(FFT.adjoint_times(power0*m0)), - title='reconstructed_sky') - ift.plotting.plot(MeasurementOperator.adjoint_times(d)) + ift.plot(true_sky) + ift.plot(nonlinearity(FFT.adjoint_times(power0*m0)), + title='reconstructed_sky') + ift.plot(MeasurementOperator.adjoint_times(d)) diff --git a/demos/paper_demos/cartesian_wiener_filter.py b/demos/paper_demos/cartesian_wiener_filter.py index e2b7eec5906536665780f6d3c60e4ce62deaa955..4fd696d093a656d10289b7347925e6c376fb49c5 100644 --- a/demos/paper_demos/cartesian_wiener_filter.py +++ b/demos/paper_demos/cartesian_wiener_filter.py @@ -107,13 +107,12 @@ if __name__ == "__main__": sm = ift.FFTSmoothingOperator(plot_space, sigma=0.03) plotdict = {"xlabel": "Pixel index", "ylabel": "Pixel index", "colormap": "Planck-like"} - ift.plotting.plot( + ift.plot( ift.log(ift.sqrt(sm(ift.Field(plot_space, val=variance.val.real)))), name='uncertainty.png', zmin=0., zmax=3., title="Uncertainty map", **plotdict) - ift.plotting.plot(ift.Field(plot_space, val=mock_signal.val.real), - name='mock_signal.png', **plotdict) - ift.plotting.plot(ift.Field(plot_space, val=data.val.real), - name='data.png', **plotdict) - ift.plotting.plot(ift.Field(plot_space, val=m.val.real), - name='map.png', **plotdict) + ift.plot(ift.Field(plot_space, val=mock_signal.val.real), + name='mock_signal.png', **plotdict) + ift.plot(ift.Field(plot_space, val=data.val.real), + name='data.png', **plotdict) + ift.plot(ift.Field(plot_space, val=m.val.real), name='map.png', **plotdict) diff --git a/demos/paper_demos/wiener_filter.py b/demos/paper_demos/wiener_filter.py index 04b131b634d7fbffb5ef0ce60f3e7b18e9b15186..ddf5a63a74468b782716bb5b21fc60d327046309 100644 --- a/demos/paper_demos/wiener_filter.py +++ b/demos/paper_demos/wiener_filter.py @@ -69,8 +69,8 @@ if __name__ == "__main__": # Plotting plotdict = {"xlabel": "Pixel index", "ylabel": "Pixel index", "colormap": "Planck-like"} - ift.plotting.plot(variance, name="uncertainty.png", **plotdict) - ift.plotting.plot(mock_signal, name="mock_signal.png", **plotdict) - ift.plotting.plot(ift.Field(signal_space, val=data.val), - name="data.png", **plotdict) - ift.plotting.plot(m, name="map.png", **plotdict) + ift.plot(variance, name="uncertainty.png", **plotdict) + ift.plot(mock_signal, name="mock_signal.png", **plotdict) + ift.plot(ift.Field(signal_space, val=data.val), + name="data.png", **plotdict) + ift.plot(m, name="map.png", **plotdict) diff --git a/demos/wiener_filter_via_curvature.py b/demos/wiener_filter_via_curvature.py index eb38204a0bee6eb23a6f91d02511082134cd3348..b32f05632704956adc804de26d5ac431e12933aa 100644 --- a/demos/wiener_filter_via_curvature.py +++ b/demos/wiener_filter_via_curvature.py @@ -77,9 +77,8 @@ if __name__ == "__main__": sspace2 = ift.RGSpace(shape, distances=L/N_pixels/nu.m) - ift.plotting.plot(ift.Field(sspace2, mock_signal.val)/nu.K, - name="mock_signal.png") + ift.plot(ift.Field(sspace2, mock_signal.val)/nu.K, name="mock_signal.png") data = ift.dobj.to_global_data(data.val).reshape(sspace2.shape)/nu.K data = ift.Field(sspace2, val=ift.dobj.from_global_data(data))/nu.K - ift.plotting.plot(ift.Field(sspace2, val=data), name="data.png") - ift.plotting.plot(ift.Field(sspace2, m_s.val)/nu.K, name="map.png") + ift.plot(ift.Field(sspace2, val=data), name="data.png") + ift.plot(ift.Field(sspace2, m_s.val)/nu.K, name="map.png") diff --git a/demos/wiener_filter_via_hamiltonian.py b/demos/wiener_filter_via_hamiltonian.py index d45a2ee4ce54a5df6cf7070ca8fb9f887a01fae9..b1d62dbbe9a4b7756e1e4e4c0809e85600d682dd 100644 --- a/demos/wiener_filter_via_hamiltonian.py +++ b/demos/wiener_filter_via_hamiltonian.py @@ -62,8 +62,8 @@ if __name__ == "__main__": energy, convergence = minimizer(energy) m = energy.position D = energy.curvature - ift.plotting.plot(ss, name="signal.png", colormap="Planck-like") - ift.plotting.plot(fft(m), name="m.png", colormap="Planck-like") + ift.plot(ss, name="signal.png", colormap="Planck-like") + ift.plot(fft(m), name="m.png", colormap="Planck-like") # sampling the uncertainty map sample_variance = ift.Field.zeros(s_space) @@ -77,4 +77,4 @@ if __name__ == "__main__": sample_mean /= n_samples sample_variance /= n_samples variance = sample_variance - sample_mean**2 - ift.plotting.plot(variance, name="variance.png", colormap="Planck-like") + ift.plot(variance, name="variance.png", colormap="Planck-like") diff --git a/nifty4/__init__.py b/nifty4/__init__.py index 8345aae2b7d1c06f2b32eca5a6d7f83aac2b64bb..199905dcf63b7cf7bd0ae5ce27a27e1bd39e7129 100644 --- a/nifty4/__init__.py +++ b/nifty4/__init__.py @@ -9,6 +9,6 @@ from .spaces import * from .operators import * from .probing import * from .sugar import * -from . import plotting +from .plotting import plot from . import library from . import dobj diff --git a/nifty4/domain_object.py b/nifty4/domain_object.py index 85e107fe5ceec02cd1d51a2689b23e06e54309f5..1e57592b0218f4d26250492682dc5cd0a92edb01 100644 --- a/nifty4/domain_object.py +++ b/nifty4/domain_object.py @@ -114,7 +114,4 @@ class DomainObject(with_metaclass( @property def total_volume(self): tmp = self.dvol() - if np.isscalar(tmp): - return self.dim * tmp - else: - return np.sum(tmp) + return self.dim * tmp if np.isscalar(tmp) else np.sum(tmp) diff --git a/nifty4/field.py b/nifty4/field.py index b57d80a2a50550533ad30ee5e3c26f3372ebb4de..ee6ad6d797b2c74906b2a60d2b349d49f6de0f7b 100644 --- a/nifty4/field.py +++ b/nifty4/field.py @@ -541,7 +541,7 @@ class Field(object): minmax = [self.min(), self.max()] mean = self.mean() return "nifty4.Field instance\n- domain = " + \ - repr(self._domain) + \ + self._domain.__str__() + \ "\n- val = " + repr(self.val) + \ "\n - min.,max. = " + str(minmax) + \ "\n - mean = " + str(mean)