diff --git a/test/test_minimization/quadratic_potential.py b/test/test_minimization/quadratic_potential.py
deleted file mode 100644
index 06b015fe9384b3df43b93c6a833e4c5f975f641f..0000000000000000000000000000000000000000
--- a/test/test_minimization/quadratic_potential.py
+++ /dev/null
@@ -1,28 +0,0 @@
-# -*- coding: utf-8 -*-
-
-from nifty import Energy
-
-
-class QuadraticPotential(Energy):
-    def __init__(self, position, eigenvalues):
-        super(QuadraticPotential, self).__init__(position)
-        self.eigenvalues = eigenvalues
-
-    def at(self, position):
-        return self.__class__(position,
-                              eigenvalues=self.eigenvalues)
-
-    @property
-    def value(self):
-        H = 0.5 * self.position.vdot(
-                    self.eigenvalues(self.position))
-        return H.real
-
-    @property
-    def gradient(self):
-        g = self.eigenvalues(self.position)
-        return g
-
-    @property
-    def curvature(self):
-        return self.eigenvalues
diff --git a/test/test_minimization/test_descent_minimizers.py b/test/test_minimization/test_descent_minimizers.py
deleted file mode 100644
index 81daf7eb5609b24cbdd2be30fcf06cbd80b4a81f..0000000000000000000000000000000000000000
--- a/test/test_minimization/test_descent_minimizers.py
+++ /dev/null
@@ -1,52 +0,0 @@
-import unittest
-
-import numpy as np
-from numpy.testing import assert_equal, assert_almost_equal
-
-from nifty import Field, DiagonalOperator, RGSpace, HPSpace
-from nifty import SteepestDescent, RelaxedNewton, VL_BFGS
-
-from itertools import product
-from test.common import expand
-
-from quadratic_potential import QuadraticPotential
-
-from nifty import logger
-
-minimizers = [SteepestDescent, RelaxedNewton, VL_BFGS]
-spaces = [RGSpace([1024, 1024], distances=0.123), HPSpace(32)]
-
-
-class Test_DescentMinimizers(unittest.TestCase):
-
-    @expand([[minimizer] for minimizer in minimizers])
-    def test_interface(self, minimizer):
-        iteration_limit = 100
-        convergence_level = 4
-        convergence_tolerance = 1E-6
-        callback = lambda z: z
-        minimizer = minimizer(iteration_limit=iteration_limit,
-                              convergence_tolerance=convergence_tolerance,
-                              convergence_level=convergence_level,
-                              callback=callback)
-
-        assert_equal(minimizer.iteration_limit, iteration_limit)
-        assert_equal(minimizer.convergence_level, convergence_level)
-        assert_equal(minimizer.convergence_tolerance, convergence_tolerance)
-        assert(minimizer.callback is callback)
-
-    @expand(product(minimizers, spaces))
-    def test_minimization(self, minimizer_class, space):
-        np.random.seed(42)
-        starting_point = Field.from_random('normal', domain=space)*10
-        covariance_diagonal = Field.from_random('uniform', domain=space) + 0.5
-        covariance = DiagonalOperator(space, diagonal=covariance_diagonal)
-        energy = QuadraticPotential(position=starting_point,
-                                    eigenvalues=covariance)
-        minimizer = minimizer_class(iteration_limit=30,
-                                    convergence_tolerance=1e-10)
-
-        (energy, convergence) = minimizer(energy)
-
-        assert_almost_equal(energy.value, 0, decimal=5)
-        assert_almost_equal(energy.position.val.get_full_data(), 0., decimal=5)
diff --git a/test/test_minimization/test_conjugate_gradient.py b/test/test_minimization/test_minimizers.py
similarity index 100%
rename from test/test_minimization/test_conjugate_gradient.py
rename to test/test_minimization/test_minimizers.py