diff --git a/demos/Wiener_Filter.ipynb b/demos/Wiener_Filter.ipynb index 1754210855c62bbedd755e0db45f734f626cab0e..b0ef1f8b38a3e372d0c120a45bceaabe287e35c0 100644 --- a/demos/Wiener_Filter.ipynb +++ b/demos/Wiener_Filter.ipynb @@ -240,7 +240,7 @@ "sh = Sh.draw_sample()\n", "noiseless_data=R(sh)\n", "noise_amplitude = np.sqrt(0.2)\n", - "N = ift.ScalingOperator(noise_amplitude**2, s_space)\n", + "N = ift.ScalingOperator(s_space, noise_amplitude**2)\n", "\n", "n = ift.Field.from_random(domain=s_space, random_type='normal',\n", " std=noise_amplitude, mean=0)\n", @@ -391,7 +391,7 @@ "source": [ "# Operators\n", "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n", - "N = ift.ScalingOperator(noise_amplitude**2,s_space)\n", + "N = ift.ScalingOperator(s_space, noise_amplitude**2)\n", "# R is defined below\n", "\n", "# Fields\n", @@ -569,7 +569,7 @@ "\n", "# Operators\n", "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n", - "N = ift.ScalingOperator(sigma2,s_space)\n", + "N = ift.ScalingOperator(s_space, sigma2)\n", "\n", "# Fields and data\n", "sh = Sh.draw_sample()\n", diff --git a/demos/getting_started_1.py b/demos/getting_started_1.py index 3698549a02ba2640b895fdf6019824a90c8f7537..886a4ceaa7362f7ae73d90a92221536e45e359d1 100644 --- a/demos/getting_started_1.py +++ b/demos/getting_started_1.py @@ -113,7 +113,7 @@ if __name__ == '__main__': # Set the noise covariance N noise = 5. - N = ift.ScalingOperator(noise, data_space) + N = ift.ScalingOperator(data_space, noise) # Create mock data MOCK_SIGNAL = S.draw_sample() diff --git a/demos/getting_started_3.py b/demos/getting_started_3.py index 2032c6b8c1dc442d53df0cdecbdcfaaf24836e09..c3fdbb83b0206ec923f29366879399bc1910ccbd 100644 --- a/demos/getting_started_3.py +++ b/demos/getting_started_3.py @@ -74,7 +74,7 @@ if __name__ == '__main__': # Specify noise data_space = R.target noise = .001 - N = ift.ScalingOperator(noise, data_space) + N = ift.ScalingOperator(data_space, noise) # Generate mock signal and data mock_position = ift.from_random('normal', signal_response.domain) diff --git a/demos/getting_started_mf.py b/demos/getting_started_mf.py index d02ba63c73d9f0ff13dd31dfc1d01054435f9fb8..1883f9a13433528f7055b64e736b06c55819dacb 100644 --- a/demos/getting_started_mf.py +++ b/demos/getting_started_mf.py @@ -93,7 +93,7 @@ if __name__ == '__main__': # Specify noise data_space = R.target noise = .001 - N = ift.ScalingOperator(noise, data_space) + N = ift.ScalingOperator(data_space, noise) # Generate mock signal and data mock_position = ift.from_random('normal', signal_response.domain) diff --git a/nifty6/library/adjust_variances.py b/nifty6/library/adjust_variances.py index e83c693f6a9ab21a5aefaa37358f232d6a84be61..1f3c624e897ae6312383a0e6f4be3b1b842cca57 100644 --- a/nifty6/library/adjust_variances.py +++ b/nifty6/library/adjust_variances.py @@ -72,7 +72,7 @@ def make_adjust_variances_hamiltonian(a, x = (a.conjugate()*a).real if scaling is not None: - x = ScalingOperator(scaling, x.target)(x) + x = ScalingOperator(x.target, scaling)(x) return StandardHamiltonian(InverseGammaLikelihood(d_eval/2.)(x), ic_samp=ic_samp) diff --git a/nifty6/library/dynamic_operator.py b/nifty6/library/dynamic_operator.py index 8a16ae3eae9ff4b038463a6d0a7184bd1a57a95c..32f991141acba990ae1fb2392eecd3ec89e1c803 100644 --- a/nifty6/library/dynamic_operator.py +++ b/nifty6/library/dynamic_operator.py @@ -74,7 +74,7 @@ def _make_dynamic_operator(target, ops['FFT'] = FFT ops['Real'] = Real if harmonic_padding is None: - CentralPadd = ScalingOperator(1., FFT.target) + CentralPadd = ScalingOperator(FFT.target, 1.) else: if isinstance(harmonic_padding, int): harmonic_padding = list((harmonic_padding,)*len(FFT.target.shape)) @@ -123,7 +123,7 @@ def _make_dynamic_operator(target, c = FieldAdapter(UnstructuredDomain(len(sigc)), keys[1]) c = makeOp(Field(c.target, np.array(sigc)))(c) - lightspeed = ScalingOperator(-0.5, c.target)(c).exp() + lightspeed = ScalingOperator(c.target, -0.5)(c).exp() scaling = np.array(m.target[0].distances[1:])/m.target[0].distances[0] scaling = DiagonalOperator(Field(c.target, scaling)) ops['lightspeed'] = scaling(lightspeed) diff --git a/nifty6/linearization.py b/nifty6/linearization.py index d62d5b402fb7731874c73cbc5966011192ef25a2..8b1787056eea1b040b5e661f370aaf5fc235bbe7 100644 --- a/nifty6/linearization.py +++ b/nifty6/linearization.py @@ -406,7 +406,7 @@ class Linearization(object): the requested Linearization """ from .operators.scaling_operator import ScalingOperator - return Linearization(field, ScalingOperator(1., field.domain), + return Linearization(field, ScalingOperator(field.domain, 1.), want_metric=want_metric) @staticmethod @@ -492,7 +492,7 @@ class Linearization(object): if len(constants) == 0: return Linearization.make_var(field, want_metric) else: - ops = {key: ScalingOperator(0. if key in constants else 1., dom) + ops = {key: ScalingOperator(dom, 0. if key in constants else 1.) for key, dom in field.domain.items()} bdop = BlockDiagonalOperator(field.domain, ops) return Linearization(field, bdop, want_metric=want_metric) diff --git a/nifty6/operators/chain_operator.py b/nifty6/operators/chain_operator.py index af46f4fefe5d1914745fd8164bbdb6549b05ed2a..78d83ef820595e1ac49b5a0dd30b8c07c1be21a0 100644 --- a/nifty6/operators/chain_operator.py +++ b/nifty6/operators/chain_operator.py @@ -72,7 +72,7 @@ class ChainOperator(LinearOperator): break if fct != 1 or len(opsnew) == 0: # have to add the scaling operator at the end - opsnew.append(ScalingOperator(fct, lastdom)) + opsnew.append(ScalingOperator(lastdom, fct)) ops = opsnew # combine DiagonalOperators where possible opsnew = [] diff --git a/nifty6/operators/energy_operators.py b/nifty6/operators/energy_operators.py index 221d70e4bbd062aa043684c14303978746731844..b748a1fccb142a4e9a55fef5063e596cda855568 100644 --- a/nifty6/operators/energy_operators.py +++ b/nifty6/operators/energy_operators.py @@ -276,7 +276,7 @@ class StudentTEnergy(EnergyOperator): return Field.scalar(v) if not x.want_metric: return v - met = ScalingOperator((self._theta+1)/(self._theta+3), self.domain) + met = ScalingOperator(self.domain, (self._theta+1) / (self._theta+3)) met = SandwichOperator.make(x.jac, met) return v.add_metric(met) diff --git a/nifty6/operators/harmonic_operators.py b/nifty6/operators/harmonic_operators.py index bd4a5e33739e173e34be6d55486d186faf9490d1..76b6f1157378a3a3546a9dcf39c645c20bf5458e 100644 --- a/nifty6/operators/harmonic_operators.py +++ b/nifty6/operators/harmonic_operators.py @@ -345,7 +345,7 @@ def HarmonicSmoothingOperator(domain, sigma, space=None): if sigma < 0.: raise ValueError("sigma must be non-negative") if sigma == 0.: - return ScalingOperator(1., domain) + return ScalingOperator(domain, 1.) domain = DomainTuple.make(domain) space = utilities.infer_space(domain, space) diff --git a/nifty6/operators/operator.py b/nifty6/operators/operator.py index 4790da315d6925a39c2b60643e1005d035419cd0..4d2ebcc51d4e851ecf0f23ca230fda50d967d445 100644 --- a/nifty6/operators/operator.py +++ b/nifty6/operators/operator.py @@ -60,7 +60,7 @@ class Operator(metaclass=NiftyMeta): if factor == 1: return self from .scaling_operator import ScalingOperator - return ScalingOperator(factor, self.target)(self) + return ScalingOperator(self.target, factor)(self) def conjugate(self): from .simple_linear_operators import ConjugationOperator diff --git a/nifty6/operators/sandwich_operator.py b/nifty6/operators/sandwich_operator.py index cfc4333efd92686976148838f8c0a06d20315d9f..07a451261dac4f85e666e69aeb6c25bf06c603bc 100644 --- a/nifty6/operators/sandwich_operator.py +++ b/nifty6/operators/sandwich_operator.py @@ -57,7 +57,7 @@ class SandwichOperator(EndomorphicOperator): if cheese is not None and not isinstance(cheese, LinearOperator): raise TypeError("cheese must be a linear operator or None") if cheese is None: - cheese = ScalingOperator(1., bun.target) + cheese = ScalingOperator(bun.target, 1.) op = bun.adjoint(bun) else: op = bun.adjoint(cheese(bun)) diff --git a/nifty6/operators/scaling_operator.py b/nifty6/operators/scaling_operator.py index 688b338a0b5776ff0eac4d99885d910fde27fff8..81e4ffb062a10ea76198d358162063460490eeaa 100644 --- a/nifty6/operators/scaling_operator.py +++ b/nifty6/operators/scaling_operator.py @@ -26,10 +26,10 @@ class ScalingOperator(EndomorphicOperator): Parameters ---------- - factor : scalar - The multiplication factor domain : Domain or tuple of Domain or DomainTuple The domain on which the Operator's input Field is defined. + factor : scalar + The multiplication factor Notes ----- @@ -50,13 +50,13 @@ class ScalingOperator(EndomorphicOperator): somewhere else. """ - def __init__(self, factor, domain): + def __init__(self, domain, factor): from ..sugar import makeDomain if not np.isscalar(factor): raise TypeError("Scalar required") - self._factor = factor self._domain = makeDomain(domain) + self._factor = factor self._capability = self._all_ops def apply(self, x, mode): @@ -81,7 +81,7 @@ class ScalingOperator(EndomorphicOperator): fct = np.conj(fct) if trafo & self.INVERSE_BIT: fct = 1./fct - return ScalingOperator(fct, self._domain) + return ScalingOperator(self._domain, fct) def _get_fct(self, from_inverse): fct = self._factor diff --git a/nifty6/operators/sum_operator.py b/nifty6/operators/sum_operator.py index ca8a76847a41883ab86f72e2f14b3422eef4bdb4..d2b06be7c3e563598a605e07636553dfd0c83580 100644 --- a/nifty6/operators/sum_operator.py +++ b/nifty6/operators/sum_operator.py @@ -99,7 +99,7 @@ class SumOperator(LinearOperator): break if sum != 0 or len(opsnew) == 0: # have to add the scaling operator at the end - opsnew.append(ScalingOperator(sum, lastdom)) + opsnew.append(ScalingOperator(lastdom, sum)) negnew.append(False) ops = opsnew diff --git a/nifty6/sugar.py b/nifty6/sugar.py index 6341bbc47943376bdca2eaee9e05731d9e8c98e9..7b0318246e35629706cd052108b3db2a72ee9975 100644 --- a/nifty6/sugar.py +++ b/nifty6/sugar.py @@ -493,7 +493,7 @@ def calculate_position(operator, output): if output.domain != operator.target: raise TypeError cov = 1e-3*output.val.max()**2 - invcov = ScalingOperator(cov, output.domain).inverse + invcov = ScalingOperator(output.domain, cov).inverse d = output + invcov.draw_sample(from_inverse=True) lh = GaussianEnergy(d, invcov)(operator) H = StandardHamiltonian( diff --git a/test/test_energy_gradients.py b/test/test_energy_gradients.py index 9797ad8d91a268c2f5fb31666525d4b4b2c6f711..6d295d9d46356bb67d242931b9b89ef435a1d4bd 100644 --- a/test/test_energy_gradients.py +++ b/test/test_energy_gradients.py @@ -37,7 +37,7 @@ PARAMS = product(SEEDS, SPACES) @pytest.fixture(params=PARAMS) def field(request): np.random.seed(request.param[0]) - S = ift.ScalingOperator(1., request.param[1]) + S = ift.ScalingOperator(request.param[1], 1.) s = S.draw_sample() return ift.MultiField.from_dict({'s1': s})['s1'] @@ -76,7 +76,7 @@ def test_hamiltonian_and_KL(field): lh = ift.GaussianEnergy(domain=space) hamiltonian = ift.StandardHamiltonian(lh) ift.extra.check_jacobian_consistency(hamiltonian, field) - S = ift.ScalingOperator(1., space) + S = ift.ScalingOperator(space, 1.) samps = [S.draw_sample() for i in range(3)] kl = ift.AveragedEnergy(hamiltonian, samps) ift.extra.check_jacobian_consistency(kl, field) diff --git a/test/test_gaussian_energy.py b/test/test_gaussian_energy.py index c802187ebd5aeea5d0a715ee6b8e4410432ef147..e317aac151c864fb6985baec2ddf9a511e431ef4 100644 --- a/test/test_gaussian_energy.py +++ b/test/test_gaussian_energy.py @@ -51,9 +51,9 @@ def test_gaussian_energy(space, nonlinearity, noise, seed): pspec = ift.PS_field(pspace, pspec) A = Dist(ift.sqrt(pspec)) - N = ift.ScalingOperator(noise, space) + N = ift.ScalingOperator(space, noise) n = N.draw_sample() - R = ift.ScalingOperator(10., space) + R = ift.ScalingOperator(space, 10.) def d_model(): if nonlinearity == "": diff --git a/test/test_multi_field.py b/test/test_multi_field.py index e29fd31873b1d03fcd83e60a195d3dce7d44c946..5d06f6fd5316e9e61412285695165f0457e5bc6a 100644 --- a/test/test_multi_field.py +++ b/test/test_multi_field.py @@ -58,7 +58,7 @@ def test_dataconv(): def test_blockdiagonal(): op = ift.BlockDiagonalOperator( - dom, {"d1": ift.ScalingOperator(20., dom["d1"])}) + dom, {"d1": ift.ScalingOperator(dom["d1"], 20.)}) op2 = op(op) ift.extra.consistency_check(op2) assert_equal(type(op2), ift.BlockDiagonalOperator) diff --git a/test/test_operators/test_composed_operator.py b/test/test_operators/test_composed_operator.py index cfe587dc02d44cf997076092580465bcccc75dd0..15d93db5bf4e64af58cdcad3913dbf134e6459cc 100644 --- a/test/test_operators/test_composed_operator.py +++ b/test/test_operators/test_composed_operator.py @@ -65,7 +65,7 @@ def test_times_inverse_times(space1, space2): def test_sum(space1): op1 = ift.makeOp(ift.Field.full(space1, 2.)) - op2 = ift.ScalingOperator(3., space1) + op2 = ift.ScalingOperator(space1, 3.) full_op = op1 + op2 - (op2 - op1) + op1 + op1 + op2 x = ift.Field.full(space1, 1.) res = full_op(x) @@ -75,7 +75,7 @@ def test_sum(space1): def test_chain(space1): op1 = ift.makeOp(ift.Field.full(space1, 2.)) - op2 = ift.ScalingOperator(3., space1) + op2 = ift.ScalingOperator(space1, 3.,) full_op = op1(op2)(op2)(op1)(op1)(op1)(op2) x = ift.Field.full(space1, 1.) res = full_op(x) @@ -85,7 +85,7 @@ def test_chain(space1): def test_mix(space1): op1 = ift.makeOp(ift.Field.full(space1, 2.)) - op2 = ift.ScalingOperator(3., space1) + op2 = ift.ScalingOperator(space1, 3.) full_op = op1(op2 + op2)(op1)(op1) - op1(op2) x = ift.Field.full(space1, 1.) res = full_op(x) diff --git a/test/test_operators/test_jacobian.py b/test/test_operators/test_jacobian.py index 48a9feb21fed88e980aa840b6cf16c4464651cb1..7228574884e4a0ac583ca2b9112d8864cd7e4dad 100644 --- a/test/test_operators/test_jacobian.py +++ b/test/test_operators/test_jacobian.py @@ -39,10 +39,10 @@ seed = list2fixture([4, 78, 23]) def testBasics(space, seed): np.random.seed(seed) - S = ift.ScalingOperator(1., space) + S = ift.ScalingOperator(space, 1.) s = S.draw_sample() var = ift.Linearization.make_var(s) - model = ift.ScalingOperator(6., var.target) + model = ift.ScalingOperator(var.target, 6.) ift.extra.check_jacobian_consistency(model, var.val) @@ -64,7 +64,7 @@ def testBinary(type1, type2, space, seed): model = select_s1.scale(3.) pos = ift.from_random("normal", dom1) ift.extra.check_jacobian_consistency(model, pos, ntries=20) - model = ift.ScalingOperator(2.456, space)(select_s1*select_s2) + model = ift.ScalingOperator(space, 2.456)(select_s1*select_s2) pos = ift.from_random("normal", dom) ift.extra.check_jacobian_consistency(model, pos, ntries=20) model = ift.sigmoid(2.456*(select_s1*select_s2)) @@ -90,7 +90,7 @@ def testBinary(type1, type2, space, seed): def testPointModel(space, seed): - S = ift.ScalingOperator(1., space) + S = ift.ScalingOperator(space, 1.) pos = S.draw_sample() alpha = 1.5 q = 0.73 @@ -118,7 +118,7 @@ def testDynamicModel(target, causal, minimum_phase, seed): 'minimum_phase': minimum_phase } model, _ = ift.dynamic_operator(**dct) - S = ift.ScalingOperator(1., model.domain) + S = ift.ScalingOperator(model.domain, 1.) pos = S.draw_sample() # FIXME I dont know why smaller tol fails for 3D example ift.extra.check_jacobian_consistency(model, pos, tol=1e-5, ntries=20) @@ -139,7 +139,7 @@ def testDynamicModel(target, causal, minimum_phase, seed): dct['sigc'] = 1. dct['quant'] = 5 model, _ = ift.dynamic_lightcone_operator(**dct) - S = ift.ScalingOperator(1., model.domain) + S = ift.ScalingOperator(model.domain, 1.) pos = S.draw_sample() # FIXME I dont know why smaller tol fails for 3D example ift.extra.check_jacobian_consistency(