test_gradients.py 6.2 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np
import pytest
20
from numpy.testing import assert_
Philipp Arras's avatar
Philipp Arras committed
21
22
23

import nifty5 as ift

24
from ..common import list2fixture
Philipp Arras's avatar
Philipp Arras committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

pmp = pytest.mark.parametrize
space = list2fixture([
    ift.GLSpace(15),
    ift.RGSpace(64, distances=.789),
    ift.RGSpace([32, 32], distances=.789)
])
space1 = space
seed = list2fixture([4, 78, 23])


def _make_linearization(type, space, seed):
    np.random.seed(seed)
    S = ift.ScalingOperator(1., space)
    s = S.draw_sample()
    if type == "Constant":
        return ift.Linearization.make_const(s)
    elif type == "Variable":
        return ift.Linearization.make_var(s)
    raise ValueError('unknown type passed')


def testBasics(space, seed):
    var = _make_linearization("Variable", space, seed)
    model = ift.ScalingOperator(6., var.target)
    ift.extra.check_value_gradient_consistency(model, var.val)


@pmp('type1', ['Variable', 'Constant'])
@pmp('type2', ['Variable'])
def testBinary(type1, type2, space, seed):
    dom1 = ift.MultiDomain.make({'s1': space})
    dom2 = ift.MultiDomain.make({'s2': space})
58
59
60
61

    # FIXME Remove this?
    _make_linearization(type1, dom1, seed)
    _make_linearization(type2, dom2, seed)
Philipp Arras's avatar
Philipp Arras committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

    dom = ift.MultiDomain.union((dom1, dom2))
    select_s1 = ift.ducktape(None, dom, "s1")
    select_s2 = ift.ducktape(None, dom, "s2")
    model = select_s1*select_s2
    pos = ift.from_random("normal", dom)
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)
    model = select_s1 + select_s2
    pos = ift.from_random("normal", dom)
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)
    model = select_s1.scale(3.)
    pos = ift.from_random("normal", dom1)
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)
    model = ift.ScalingOperator(2.456, space)(select_s1*select_s2)
    pos = ift.from_random("normal", dom)
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)
78
    model = ift.sigmoid(2.456*(select_s1*select_s2))
Philipp Arras's avatar
Philipp Arras committed
79
80
81
82
83
    pos = ift.from_random("normal", dom)
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)
    pos = ift.from_random("normal", dom)
    model = ift.OuterProduct(pos['s1'], ift.makeDomain(space))
    ift.extra.check_value_gradient_consistency(model, pos['s2'], ntries=20)
84
85
86
87
88
89
    model = select_s1 **2
    pos = ift.from_random("normal", dom1)
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)
    model = select_s1.clip(-1,1)
    pos = ift.from_random("normal", dom1)
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
90
91
92
93
94
95
96
97
98
    if isinstance(space, ift.RGSpace):
        model = ift.FFTOperator(space)(select_s1*select_s2)
        pos = ift.from_random("normal", dom)
        ift.extra.check_value_gradient_consistency(model, pos, ntries=20)


def testModelLibrary(space, seed):
    # Tests amplitude model and coorelated field model
    np.random.seed(seed)
99
    domain = ift.PowerSpace(space.get_default_codomain())
100
101
    model = ift.SLAmplitude(target=domain, n_pix=4, a=.5, k0=2, sm=3, sv=1.5,
                            im=1.75, iv=1.3)
102
    assert_(isinstance(model, ift.Operator))
Philipp Arras's avatar
Philipp Arras committed
103
104
105
106
107
108
109
110
111
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)

    model2 = ift.CorrelatedField(space, model)
    S = ift.ScalingOperator(1., model2.domain)
    pos = S.draw_sample()
    ift.extra.check_value_gradient_consistency(model2, pos, ntries=20)

112
113
114
115
116
117
    domtup = ift.DomainTuple.make((space, space))
    model3 = ift.MfCorrelatedField(domtup, [model, model])
    S = ift.ScalingOperator(1., model3.domain)
    pos = S.draw_sample()
    ift.extra.check_value_gradient_consistency(model3, pos, ntries=20)

Philipp Arras's avatar
Philipp Arras committed
118
119
120
121
122
123

def testPointModel(space, seed):
    S = ift.ScalingOperator(1., space)
    pos = S.draw_sample()
    alpha = 1.5
    q = 0.73
Philipp Arras's avatar
Fixups  
Philipp Arras committed
124
    model = ift.InverseGammaOperator(space, alpha, q)
Philipp Arras's avatar
Philipp Arras committed
125
126
    # FIXME All those cdfs and ppfs are not very accurate
    ift.extra.check_value_gradient_consistency(model, pos, tol=1e-2, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
127

128

Philipp Frank's avatar
Philipp Frank committed
129
130
131
132
@pmp('target', [
    ift.RGSpace(64, distances=.789,harmonic=True),
    ift.RGSpace([32, 32], distances=.789,harmonic=True),
    ift.RGSpace([32, 32, 8], distances=.789,harmonic=True)
133
])
Martin Reinecke's avatar
Martin Reinecke committed
134
135
136
@pmp('causal', [True, False])
@pmp('minimum_phase', [True, False])
@pmp('seed', [4, 78, 23])
Philipp Frank's avatar
Philipp Frank committed
137
138
139
140
141
142
143
144
145
146
147
def testDynamicModel(target, causal, minimum_phase, seed):
    dct = {
            'target': target,
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'causal': causal,
            'minimum_phase': minimum_phase
            }
    model, _ = ift.dynamic_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
148
149
150
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
    # FIXME I dont know why smaller tol fails for 3D example
151
    ift.extra.check_value_gradient_consistency(model, pos, tol=1e-5, ntries=20)
Philipp Frank's avatar
Philipp Frank committed
152
    if len(target.shape) > 1:
153
        dct = {
Philipp Frank's avatar
Philipp Frank committed
154
            'target': target,
155
156
157
158
159
160
161
162
163
164
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'lightcone_key': 'c',
            'sigc': 1.,
            'quant': 5,
            'causal': causal,
            'minimum_phase': minimum_phase
        }
Philipp Frank's avatar
Philipp Frank committed
165
166
167
        dct['lightcone_key'] = 'c'
        dct['sigc'] = 1.
        dct['quant'] = 5
168
        model, _ = ift.dynamic_lightcone_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
169
170
171
        S = ift.ScalingOperator(1., model.domain)
        pos = S.draw_sample()
        # FIXME I dont know why smaller tol fails for 3D example
172
173
        ift.extra.check_value_gradient_consistency(
            model, pos, tol=1e-5, ntries=20)