field.py 45.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

csongor's avatar
csongor committed
19
from __future__ import division
20
21

import itertools
csongor's avatar
csongor committed
22
23
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
24
25
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
26

27
from d2o import distributed_data_object,\
28
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
29

30
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
31

32
from nifty.domain_object import DomainObject
33

34
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
35

csongor's avatar
csongor committed
36
import nifty.nifty_utilities as utilities
37
38
from nifty.random import Random

csongor's avatar
csongor committed
39

Jait Dixit's avatar
Jait Dixit committed
40
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
41
42
43
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
44
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
45
46
    In addition Field has methods to work with power-spectra.

47
48
49
50
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
51
        LMSpace or PowerSpace. It might also be a FieldArray, which is
52
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
53

54
55
56
57
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
58

59
60
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
61

62
63
64
65
66
67
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
68

69
70
71
72
73
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
74

75
76
77
78
79
80
81
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
82
83
        Name of the used distribution_strategy.

84
85
86
87
88
89
90
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
91

92
93
94
95
96
97
98
99
100
101
102
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
103

104
105
106
107
108
    See Also
    --------
    distributed_data_object

    """
109

Theo Steininger's avatar
Theo Steininger committed
110
    # ---Initialization methods---
111

112
    def __init__(self, domain=None, val=None, dtype=None,
113
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
114

115
        self.domain = self._parse_domain(domain=domain, val=val)
116
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
117

Theo Steininger's avatar
Theo Steininger committed
118
        self.dtype = self._infer_dtype(dtype=dtype,
119
                                       val=val)
120

121
122
123
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
124

125
126
127
128
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
129

130
    def _parse_domain(self, domain, val=None):
131
        if domain is None:
132
133
134
135
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
136
        elif isinstance(domain, DomainObject):
137
            domain = (domain,)
138
139
140
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
141
        for d in domain:
142
            if not isinstance(d, DomainObject):
143
144
                raise TypeError(
                    "Given domain contains something that is not a "
145
                    "DomainObject instance.")
csongor's avatar
csongor committed
146
147
        return domain

Theo Steininger's avatar
Theo Steininger committed
148
149
150
151
152
153
154
155
156
157
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
158

159
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
160
        if dtype is None:
161
            try:
162
                dtype = val.dtype
163
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
164
165
166
                try:
                    if val is None:
                        raise TypeError
167
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
168
                except(TypeError):
169
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
170
        else:
171
            dtype = np.dtype(dtype)
172

Theo Steininger's avatar
Theo Steininger committed
173
        return dtype
174

175
176
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
177
            if isinstance(val, distributed_data_object):
178
                distribution_strategy = val.distribution_strategy
179
            elif isinstance(val, Field):
180
                distribution_strategy = val.distribution_strategy
181
            else:
182
                self.logger.debug("distribution_strategy set to default!")
183
                distribution_strategy = gc['default_distribution_strategy']
184
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
185
186
187
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
188
        return distribution_strategy
189
190

    # ---Factory methods---
191

192
    @classmethod
193
    def from_random(cls, random_type, domain=None, dtype=None,
194
                    distribution_strategy=None, **kwargs):
195
196
197
198
199
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
200

201
202
203
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
204

205
206
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
207

208
209
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
210

211
212
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
213

214
215
216
217
218
219
220
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
Theo Steininger's avatar
Theo Steininger committed
221
222
        power_synthesise

223
224

        """
Theo Steininger's avatar
Theo Steininger committed
225

226
        # create a initially empty field
227
        f = cls(domain=domain, dtype=dtype,
228
                distribution_strategy=distribution_strategy)
229
230
231
232
233
234
235

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
236
        # extract the distributed_data_object from f and apply the appropriate
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
263
        else:
264
265
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
266

267
        return random_arguments
csongor's avatar
csongor committed
268

269
270
    # ---Powerspectral methods---

Theo Steininger's avatar
Theo Steininger committed
271
272
273
    def power_analyze(self, spaces=None, logarithmic=False, nbin=None,
                      binbounds=None, decompose_power=True):
        """ Computes the powerspectrum for a subspace of the Field.
Theo Steininger's avatar
Theo Steininger committed
274

Theo Steininger's avatar
Theo Steininger committed
275
276
277
278
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
        harmonic space.
279
280
281

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
282
283
284
285
286
287
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
            if spaces==None : Tries to synthesize for the whole domain
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
288
            {default : False}
Theo Steininger's avatar
Theo Steininger committed
289
290
291
292
293
294
295
296
297
298
299
300
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
            if binbounds==None : bins are inferred. Overwrites nbins and log
        decompose_power : boolean, *optional*
            Whether the analysed signal-space Field is intrinsically real or
            complex and if the power spectrum shall therefore be computed
            for the real and the imaginary part of the Field separately
            (default : True).
Theo Steininger's avatar
Theo Steininger committed
301

302
303
304
305
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
306
307
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
308
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
309

310
311
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
312
        out : Field
313
314
315
316
317
318
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
319

320
        """
Theo Steininger's avatar
Theo Steininger committed
321

Theo Steininger's avatar
Theo Steininger committed
322
        # check if all spaces in `self.domain` are either harmonic or
323
324
325
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
326
                self.logger.info(
327
                    "Field has a space in `domain` which is neither "
328
329
330
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
331
332
333
334
335
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
336
337
338
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
339
340

        if len(spaces) == 0:
341
342
            raise ValueError(
                "No space for analysis specified.")
343
        elif len(spaces) > 1:
344
345
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
346
347
348
349

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
350
351
            raise ValueError(
                "The analyzed space must be harmonic.")
352

353
354
355
356
357
358
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

359
360
361
362
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

363
        harmonic_domain = self.domain[space_index]
364
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
365
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
366
367
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
368

369
        # extract pindex and rho from power_domain
370
371
        pindex = power_domain.pindex
        rho = power_domain.rho
372

Theo Steininger's avatar
Theo Steininger committed
373
        if decompose_power:
374
            hermitian_part, anti_hermitian_part = \
375
                harmonic_domain.hermitian_decomposition(
376
377
378
379
380
381
382
383
384
385
386
387
388
389
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
390
391
392
393
394
395
396
397
398
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

Theo Steininger's avatar
Theo Steininger committed
399
        if decompose_power:
400
401
402
403
            result_dtype = np.complex
        else:
            result_dtype = np.float

404
405
        result_field = self.copy_empty(
                   domain=result_domain,
406
                   dtype=result_dtype,
407
                   distribution_strategy=power_spectrum.distribution_strategy)
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
436
            raise ValueError("pindex's distribution strategy must be "
437
438
439
440
441
442
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
443
                    "A slicing distributor shall not be reshaped to "
444
445
446
447
448
449
450
451
452
453
454
455
456
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

457
458
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
                         mean=None, std=None):
Theo Steininger's avatar
Theo Steininger committed
459
        """ Converts a power spectrum into a random field realization.
Theo Steininger's avatar
Theo Steininger committed
460

Theo Steininger's avatar
Theo Steininger committed
461
462
        This method draws a Gaussian random field in the harmic partner domain
        of a PowerSpace.
Theo Steininger's avatar
Theo Steininger committed
463

464
465
        Notes
        -----
Theo Steininger's avatar
Theo Steininger committed
466
        For this the spaces specified by `spaces` must be a PowerSpaces.
Theo Steininger's avatar
Theo Steininger committed
467

468
469
470
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
471
472
473
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
474
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
475
476
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
477
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
478
479
480
481
482
483
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
484
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
485
486
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
487
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
488
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
489

490
491
492
493
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
494
            stored in the `spaces` in `self`.
495
496
497
498

        See Also
        --------
        power_analyze
499

500
        """
Theo Steininger's avatar
Theo Steininger committed
501

502
503
504
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
505
506
507
        if spaces is None:
            spaces = range(len(self.domain))

508
509
510
511
512
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
513
514
515

        # create the result domain
        result_domain = list(self.domain)
516
517
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
518
            harmonic_domain = power_space.harmonic_partner
519
            result_domain[power_space_index] = harmonic_domain
520
521
522

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
523
        if real_power:
524
            result_list = [None]
525
526
        else:
            result_list = [None, None]
527

528
529
        result_list = [self.__class__.from_random(
                             'normal',
530
531
532
                             mean=mean,
                             std=std,
                             domain=result_domain,
533
                             dtype=np.complex,
534
                             distribution_strategy=self.distribution_strategy)
535
536
537
538
539
540
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

        spec = self.val.get_full_data()
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

559
        if real_signal:
560
561
562
563
564
565
            result_val_list = [self._hermitian_decomposition(
                                                result_domain,
                                                result_val,
                                                spaces,
                                                result_list[0].domain_axes)[0]
                               for result_val in result_val_list]
566
567
568
569
570
571
572

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
573
        else:
574
575
576
577
            result = result_list[0] + 1j*result_list[1]

        return result

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
    @staticmethod
    def _hermitian_decomposition(domain, val, spaces, domain_axes):
        # hermitianize for the first space
        (h, a) = domain[spaces[0]].hermitian_decomposition(
                                                       val,
                                                       domain_axes[spaces[0]])
        # hermitianize all remaining spaces using the iterative formula
        for space in xrange(1, len(spaces)):
            (hh, ha) = \
                domain[space].hermitian_decomposition(h, domain_axes[space])
            (ah, aa) = \
                domain[space].hermitian_decomposition(a, domain_axes[space])
            c = (hh - ha - ah + aa).conjugate()
            h = (val + c)/2.
            a = (val - c)/2.

        # correct variance
        fixed_points = [domain[i].hermitian_fixed_points() for i in spaces]
        # check if there was at least one flipping during hermitianization
        flipped_Q = np.any([fp is not None for fp in fixed_points])
        # if the array got flipped, correct the variance
        if flipped_Q:
            h *= np.sqrt(2)
            a *= np.sqrt(2)
            fixed_points = [[fp] if fp is None else fp for fp in fixed_points]
            for product_point in itertools.product(*fixed_points):
                slice_object = np.array((slice(None), )*len(val.shape),
                                        dtype=np.object)
                for i, sp in enumerate(spaces):
                    point_component = product_point[i]
                    if point_component is None:
                        point_component = slice(None)
                    slice_object[list(domain_axes[sp])] = point_component

                slice_object = tuple(slice_object)
                h[slice_object] /= np.sqrt(2)
                a[slice_object] /= np.sqrt(2)

        return (h, a)

618
619
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
620
621
622

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
623
        pindex = power_space.pindex
624
625
626
627
628
629
630
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
631
            self.logger.warn(
632
                "The distribution_stragey of pindex does not fit the "
633
634
635
636
637
638
639
640
641
642
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex
        # here, the power_spectrum is distributed into the new shape
643
644
        local_rescaler = spec[local_blow_up]
        return local_rescaler
645

Theo Steininger's avatar
Theo Steininger committed
646
    # ---Properties---
647

Theo Steininger's avatar
Theo Steininger committed
648
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
649
        """ Sets the fields distributed_data_object.
650
651
652

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
653
        new_val : scalar, array-like, Field, None *optional*
654
655
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
656

657
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
658
659
            If False, Field tries to not copy the input data but use it
            directly.
660
661
662
663
664
665
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
666

667
668
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
669
670
            new_val = new_val.copy()
        self._val = new_val
671
        return self
csongor's avatar
csongor committed
672

673
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
674
        """ Returns the distributed_data_object associated with this Field.
675
676
677
678

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
679
680
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
681

682
683
684
685
686
687
688
689
690
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
691

692
693
694
        if self._val is None:
            self.set_val(None)

695
        if copy:
Theo Steininger's avatar
Theo Steininger committed
696
            return self._val.copy()
697
        else:
Theo Steininger's avatar
Theo Steininger committed
698
            return self._val
csongor's avatar
csongor committed
699

Theo Steininger's avatar
Theo Steininger committed
700
701
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
702
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
703

704
705
706
707
708
709
710
711
712
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
713

714
        return self.get_val(copy=False)
csongor's avatar
csongor committed
715

Theo Steininger's avatar
Theo Steininger committed
716
717
    @val.setter
    def val(self, new_val):
718
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
719

720
721
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
722
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
723

724
725
726
727
728
729
730
731
732
733
734
        Returns
        -------
        out : tuple
            The output object. The tuple contains the dimansions of the spaces
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
735

736
        shape_tuple = tuple(sp.shape for sp in self.domain)
737
738
739
740
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
741

742
        return global_shape
csongor's avatar
csongor committed
743

744
745
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
746
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
747

Theo Steininger's avatar
Theo Steininger committed
748
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
749

750
751
752
753
754
755
756
757
758
759
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
760

761
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
762
763
764
765
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
766

767
768
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
769
770
771
772
773
774
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
775
776
777
778
779
780
781
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
782
783
784
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
785
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
786
        try:
Theo Steininger's avatar
Theo Steininger committed
787
            return reduce(lambda x, y: x * y, volume_tuple)
788
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
789
            return 0.
790

Theo Steininger's avatar
Theo Steininger committed
791
    # ---Special unary/binary operations---
792

csongor's avatar
csongor committed
793
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
794
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
795

796
797
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
798
        x : scalar, d2o, Field, array_like
799
800
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
801

802
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
803
804
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
805

806
807
808
809
810
811
812
813
814
815
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
816
817
        if dtype is None:
            dtype = self.dtype
818
819
        else:
            dtype = np.dtype(dtype)
820

821
822
        casted_x = x

823
        for ind, sp in enumerate(self.domain):
824
            casted_x = sp.pre_cast(casted_x,
825
826
827
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
828
829

        for ind, sp in enumerate(self.domain):
830
831
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
832

833
        return casted_x
csongor's avatar
csongor committed
834

Theo Steininger's avatar
Theo Steininger committed
835
    def _actual_cast(self, x, dtype=None):
836
        if isinstance(x, Field):
csongor's avatar
csongor committed
837
838
839
840
841
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

842
        return_x = distributed_data_object(
843
844
845
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
846
847
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
848

849
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
850
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
851

852
853
854
855
856
857
858
859
860
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
861

862
863
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
864

865
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
866
867
            The new distribution strategy the Field shall have.

868
869
870
871
872
873
874
875
876
877
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
878

Theo Steininger's avatar
Theo Steininger committed
879
        copied_val = self.get_val(copy=True)
880
881
882
883
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
884
885
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
886

887
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
888
889
890
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
891
892
893
894
895
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
896

897
898
899
900
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
901

902
903
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
904

Theo Steininger's avatar
Theo Steininger committed
905
        distribution_strategy : string, all supported distribution strategies
906
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
907

908
909
910
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
911
            The output object.
912
913
914
915
916
917

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
918

Theo Steininger's avatar
Theo Steininger committed
919
920
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
921
        else:
Theo Steininger's avatar
Theo Steininger committed
922
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
923

Theo Steininger's avatar
Theo Steininger committed
924
925
926
927
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
928

929
930
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
931

Theo Steininger's avatar
Theo Steininger committed
932
933
934
935
936
937
938
939
940
941
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
942
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
943
944
945
946
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
947
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
948
        return new_field
csongor's avatar
csongor committed
949

Theo Steininger's avatar
Theo Steininger committed
950
951
952
953
954
955
956
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
957
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
958
959
960
961
962
963
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
964
        """ Weights the pixels of `self` with their invidual pixel-volume.
965
966
967
968

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
969
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
970

971
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
972
973
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
974

Theo Steininger's avatar
Theo Steininger committed
975
976
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
977

978
979
980
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
981
            The weighted field.
982
983

        """
984
        if inplace:
csongor's avatar
csongor committed
985
986
987
988
            new_field = self
        else:
            new_field = self.copy_empty()

989
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
990

991
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
992
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
993
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
994

995
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
996
997
998
999
1000
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
1001
1002

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
1003
1004
        return new_field

1005
    def dot(self, x=None, spaces=None, bare=False):
Theo Steininger's avatar
Theo Steininger committed
1006
        """ Computes the volume-factor-aware dot product of 'self' with x.
Theo Steininger's avatar
Theo Steininger committed
1007

1008
1009
1010
        Parameters
        ----------
        x : Field
Theo Steininger's avatar
Theo Steininger committed
1011
            The domain of x must contain `self.domain`
Theo Steininger's avatar
Theo Steininger committed
1012

Theo Steininger's avatar
Theo Steininger committed
1013
1014
1015
        spaces : tuple of ints
            If the domain of `self` and `x` are not the same, `spaces` specfies
            the mapping.
Theo Steininger's avatar
Theo Steininger committed
1016

1017
        bare : boolean
Theo Steininger's avatar
Theo Steininger committed
1018
            If true, no volume factors will be included in the computation.
Theo Steininger's avatar
Theo Steininger committed
1019

1020
1021
1022
        Returns
        -------
        out : float, complex
Theo Steininger's avatar
Theo Steininger committed
1023

1024
        """
1025
1026
1027
        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
1028

Martin Reinecke's avatar
Martin Reinecke committed
1029
        # Compute the dot respecting the fact of discrete/continuous spaces
Theo Steininger's avatar
Theo Steininger committed
1030
1031
1032
1033
1034
        if bare:
            y = self
        else:
            y = self.weight(power=1)

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
        if spaces is None:
            x_val = x.get_val(copy=False)
            y_val = y.get_val(copy=False)
            result = (x_val.conjugate() * y_val).sum()
            return result
        else:
            # create a diagonal operator which is capable of taking care of the
            # axes-matching
            from nifty.operators.diagonal_operator import DiagonalOperator
            diagonal = y.val.conjugate()
            diagonalOperator = DiagonalOperator(domain=y.domain,
                                                diagonal=diagonal,
                                                copy=False)
            dotted = diagonalOperator(x, spaces=spaces)
            return dotted.sum(spaces=spaces)
Theo Steininger's avatar
Theo Steininger committed
1050

1051
    def norm(self, q=2):
1052
        """ Computes the Lq-norm of the field values.
csongor's avatar
csongor committed
1053

Theo Steininger's avatar
Theo Steininger committed
1054
1055
1056
1057
        Parameters
        ----------
        q : scalar
            Parameter q of the Lq-norm (default: 2).
csongor's avatar
csongor committed
1058

Theo Steininger's avatar
Theo Steininger committed
1059
1060
1061
1062
        Returns
        -------
        norm : scalar
            The Lq-norm of the field values.
csongor's avatar
csongor committed
1063
1064

        """
Theo Steininger's avatar
Theo Steininger committed
1065

1066
        if q == 2:
1067
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
1068
        else:
1069
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
1070
1071

    def conjugate(self, inplace=False):
1072
        """ Retruns the complex conjugate of the field.
Theo Steininger's avatar
Theo Steininger committed
1073

1074
1075
1076
        Parameters
        ----------
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
1077
            Decides whether the conjugation should be performed inplace.
Theo Steininger's avatar
Theo Steininger committed
1078

1079
1080
1081
1082
        Returns
        -------
        cc : field
            The complex conjugated field.
csongor's avatar
csongor committed
1083
1084

        """
Theo Steininger's avatar
Theo Steininger committed
1085

csongor's avatar
csongor committed
1086
1087
1088
1089
1090
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()