operator.py 14.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Martin Reinecke's avatar
Martin Reinecke committed
18
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
19
from ..utilities import NiftyMeta, indent
Martin Reinecke's avatar
Martin Reinecke committed
20
21


Martin Reinecke's avatar
Martin Reinecke committed
22
class Operator(metaclass=NiftyMeta):
Philipp Arras's avatar
Philipp Arras committed
23
    """Transforms values defined on one domain into values defined on another
Martin Reinecke's avatar
Martin Reinecke committed
24
25
26
    domain, and can also provide the Jacobian.
    """

Martin Reinecke's avatar
Martin Reinecke committed
27
    @property
Martin Reinecke's avatar
Martin Reinecke committed
28
    def domain(self):
Philipp Arras's avatar
Docs    
Philipp Arras committed
29
        """The domain on which the Operator's input Field is defined.
Martin Reinecke's avatar
Martin Reinecke committed
30

Philipp Arras's avatar
Docs    
Philipp Arras committed
31
32
33
34
        Returns
        -------
        domain : DomainTuple or MultiDomain
        """
Martin Reinecke's avatar
Martin Reinecke committed
35
        return self._domain
Martin Reinecke's avatar
Martin Reinecke committed
36

Martin Reinecke's avatar
Martin Reinecke committed
37
    @property
Martin Reinecke's avatar
Martin Reinecke committed
38
    def target(self):
Philipp Arras's avatar
Docs    
Philipp Arras committed
39
40
41
42
43
44
        """The domain on which the Operator's output Field is defined.

        Returns
        -------
        target : DomainTuple or MultiDomain
        """
Martin Reinecke's avatar
Martin Reinecke committed
45

Martin Reinecke's avatar
Martin Reinecke committed
46
        return self._target
Martin Reinecke's avatar
Martin Reinecke committed
47

Martin Reinecke's avatar
Martin Reinecke committed
48
49
50
51
52
53
    @staticmethod
    def _check_domain_equality(dom_op, dom_field):
        if dom_op != dom_field:
            s = "The operator's and field's domains don't match."
            from ..domain_tuple import DomainTuple
            from ..multi_domain import MultiDomain
Sebastian Hutschenreuter's avatar
fix    
Sebastian Hutschenreuter committed
54
            if not isinstance(dom_op, (DomainTuple, MultiDomain,)):
Martin Reinecke's avatar
Martin Reinecke committed
55
56
57
58
                s += " Your operator's domain is neither a `DomainTuple`" \
                     " nor a `MultiDomain`."
            raise ValueError(s)

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
59
60
61
62
    def scale(self, factor):
        if factor == 1:
            return self
        from .scaling_operator import ScalingOperator
63
        return ScalingOperator(self.target, factor)(self)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
64
65
66
67
68

    def conjugate(self):
        from .simple_linear_operators import ConjugationOperator
        return ConjugationOperator(self.target)(self)

Martin Reinecke's avatar
Martin Reinecke committed
69
70
71
72
73
    @property
    def real(self):
        from .simple_linear_operators import Realizer
        return Realizer(self.target)(self)

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
74
75
76
    def __neg__(self):
        return self.scale(-1)

Martin Reinecke's avatar
Martin Reinecke committed
77
78
79
    def __matmul__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
80
        return _OpChain.make((self, x))
Martin Reinecke's avatar
Martin Reinecke committed
81

Philipp Arras's avatar
Philipp Arras committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    def partial_insert(self, x):
        from ..multi_domain import MultiDomain
        if not isinstance(x, Operator):
            raise TypeError
        if not isinstance(self.domain, MultiDomain):
            raise TypeError
        if not isinstance(x.target, MultiDomain):
            raise TypeError
        bigdom = MultiDomain.union([self.domain, x.target])
        k1, k2 = set(self.domain.keys()), set(x.target.keys())
        le, ri = k2 - k1, k1 - k2
        leop, riop = self, x
        if len(ri) > 0:
            riop = riop + self.identity_operator(
                MultiDomain.make({kk: bigdom[kk]
                                  for kk in ri}))
        if len(le) > 0:
            leop = leop + self.identity_operator(
                MultiDomain.make({kk: bigdom[kk]
                                  for kk in le}))
        return leop @ riop

    @staticmethod
    def identity_operator(dom):
        from .block_diagonal_operator import BlockDiagonalOperator
        from .scaling_operator import ScalingOperator
        idops = {kk: ScalingOperator(dd, 1.) for kk, dd in dom.items()}
        return BlockDiagonalOperator(dom, idops)

Martin Reinecke's avatar
Martin Reinecke committed
111
    def __mul__(self, x):
112
113
114
115
116
        if isinstance(x, Operator):
            return _OpProd(self, x)
        if np.isscalar(x):
            return self.scale(x)
        return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
117

118
119
120
    def __rmul__(self, x):
        return self.__mul__(x)

Philipp Arras's avatar
Philipp Arras committed
121
122
123
    def __add__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
124
        return _OpSum(self, x)
Philipp Arras's avatar
Philipp Arras committed
125

126
127
128
129
130
    def __sub__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
        return _OpSum(self, -x)

Martin Reinecke's avatar
Martin Reinecke committed
131
132
133
134
135
    def __pow__(self, power):
        if not np.isscalar(power):
            return NotImplemented
        return _OpChain.make((_PowerOp(self.target, power), self))

Martin Reinecke's avatar
Martin Reinecke committed
136
137
138
    def clip(self, min=None, max=None):
        if min is None and max is None:
            return self
Jakob Knollmueller's avatar
Jakob Knollmueller committed
139
        return _OpChain.make((_Clipper(self.target, min, max), self))
Martin Reinecke's avatar
Martin Reinecke committed
140

Martin Reinecke's avatar
Martin Reinecke committed
141
    def apply(self, x):
142
        """Applies the operator to a Field or MultiField.
Philipp Arras's avatar
Docs    
Philipp Arras committed
143
144
145
146
147
148

        Parameters
        ----------
        x : Field or MultiField
            Input on which the operator shall act. Needs to be defined on
            :attr:`domain`.
149
        """
Martin Reinecke's avatar
Martin Reinecke committed
150
        raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
151

Philipp Arras's avatar
Philipp Arras committed
152
    def force(self, x):
Philipp Arras's avatar
Docs    
Philipp Arras committed
153
154
        """Extract subset of domain of x according to `self.domain` and apply
        operator."""
Philipp Arras's avatar
Philipp Arras committed
155
156
        return self.apply(x.extract(self.domain))

157
158
159
    def _check_input(self, x):
        from ..linearization import Linearization
        d = x.target if isinstance(x, Linearization) else x.domain
Martin Reinecke's avatar
Martin Reinecke committed
160
        self._check_domain_equality(self._domain, d)
161

Martin Reinecke's avatar
Martin Reinecke committed
162
    def __call__(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
163
164
165
        if isinstance(x, Operator):
            return _OpChain.make((self, x))
        return self.apply(x)
Martin Reinecke's avatar
Martin Reinecke committed
166

Martin Reinecke's avatar
Martin Reinecke committed
167
168
169
170
171
172
173
174
    def ducktape(self, name):
        from .simple_linear_operators import ducktape
        return self(ducktape(self, None, name))

    def ducktape_left(self, name):
        from .simple_linear_operators import ducktape
        return ducktape(None, self, name)(self)

Martin Reinecke's avatar
Martin Reinecke committed
175
176
177
    def __repr__(self):
        return self.__class__.__name__

178
    def simplify_for_constant_input(self, c_inp):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
179
        if c_inp is None:
180
            return None, self
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
181
182
183
184
185
186
187
        if c_inp.domain == self.domain:
            op = _ConstantOperator(self.domain, self(c_inp))
            return op(c_inp), op
        return self._simplify_for_constant_input_nontrivial(c_inp)

    def _simplify_for_constant_input_nontrivial(self, c_inp):
        return None, self
188

Martin Reinecke's avatar
Martin Reinecke committed
189

190
191
for f in ["sqrt", "exp", "log", "sin", "cos", "tan", "sinh", "cosh", "tanh",
          "sinc", "sigmoid", "absolute", "one_over", "log10", "log1p", "expm1"]:
Martin Reinecke's avatar
Martin Reinecke committed
192
193
    def func(f):
        def func2(self):
194
            fa = _FunctionApplier(self.target, f)
Martin Reinecke's avatar
Martin Reinecke committed
195
196
197
198
199
            return _OpChain.make((fa, self))
        return func2
    setattr(Operator, f, func(f))


200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
class _ConstCollector(object):
    def __init__(self):
        self._const = None
        self._nc = set()

    def mult(self, const, fulldom):
        if const is None:
            self._nc |= set(fulldom)
        else:
            self._nc |= set(fulldom) - set(const)
            if self._const is None:
                from ..multi_field import MultiField
                self._const = MultiField.from_dict(
                    {key: const[key] for key in const if key not in self._nc})
            else:
                from ..multi_field import MultiField
                self._const = MultiField.from_dict(
                    {key: self._const[key]*const[key]
                     for key in const if key not in self._nc})

    def add(self, const, fulldom):
        if const is None:
            self._nc |= set(fulldom.keys())
        else:
            from ..multi_field import MultiField
            self._nc |= set(fulldom.keys()) - set(const.keys())
            if self._const is None:
                self._const = MultiField.from_dict(
Martin Reinecke's avatar
Martin Reinecke committed
228
229
                    {key: const[key]
                     for key in const.keys() if key not in self._nc})
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
            else:
                self._const = self._const.unite(const)
                self._const = MultiField.from_dict(
                    {key: self._const[key]
                     for key in self._const if key not in self._nc})

    @property
    def constfield(self):
        return self._const


class _ConstantOperator(Operator):
    def __init__(self, dom, output):
        from ..sugar import makeDomain
        self._domain = makeDomain(dom)
        self._target = output.domain
        self._output = output

    def apply(self, x):
        from ..linearization import Linearization
        from .simple_linear_operators import NullOperator
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
251
        from ..domain_tuple import DomainTuple
252
253
254
        self._check_input(x)
        if not isinstance(x, Linearization):
            return self._output
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
255
256
257
258
259
260
        if x.want_metric and self._target is DomainTuple.scalar_domain():
            met = NullOperator(self._domain, self._domain)
        else:
            met = None
        return x.new(self._output, NullOperator(self._domain, self._target),
                     met)
261
262
263

    def __repr__(self):
        return 'ConstantOperator <- {}'.format(self.domain.keys())
Philipp Arras's avatar
Philipp Arras committed
264
265


Martin Reinecke's avatar
Martin Reinecke committed
266
267
268
class _FunctionApplier(Operator):
    def __init__(self, domain, funcname):
        from ..sugar import makeDomain
Martin Reinecke's avatar
Martin Reinecke committed
269
        self._domain = self._target = makeDomain(domain)
Martin Reinecke's avatar
Martin Reinecke committed
270
271
        self._funcname = funcname

Martin Reinecke's avatar
Martin Reinecke committed
272
    def apply(self, x):
273
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
274
275
276
        return getattr(x, self._funcname)()


Martin Reinecke's avatar
Martin Reinecke committed
277
278
279
280
281
282
283
284
285
286
287
288
class _Clipper(Operator):
    def __init__(self, domain, min=None, max=None):
        from ..sugar import makeDomain
        self._domain = self._target = makeDomain(domain)
        self._min = min
        self._max = max

    def apply(self, x):
        self._check_input(x)
        return x.clip(self._min, self._max)


Martin Reinecke's avatar
Martin Reinecke committed
289
290
291
292
293
294
295
296
297
298
299
class _PowerOp(Operator):
    def __init__(self, domain, power):
        from ..sugar import makeDomain
        self._domain = self._target = makeDomain(domain)
        self._power = power

    def apply(self, x):
        self._check_input(x)
        return x**self._power


Martin Reinecke's avatar
Martin Reinecke committed
300
301
302
303
304
305
306
307
308
309
class _CombinedOperator(Operator):
    def __init__(self, ops, _callingfrommake=False):
        if not _callingfrommake:
            raise NotImplementedError
        self._ops = tuple(ops)

    @classmethod
    def unpack(cls, ops, res):
        for op in ops:
            if isinstance(op, cls):
Martin Reinecke's avatar
Martin Reinecke committed
310
                res = cls.unpack(op._ops, res)
Martin Reinecke's avatar
Martin Reinecke committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
            else:
                res = res + [op]
        return res

    @classmethod
    def make(cls, ops):
        res = cls.unpack(ops, [])
        if len(res) == 1:
            return res[0]
        return cls(res, _callingfrommake=True)


class _OpChain(_CombinedOperator):
    def __init__(self, ops, _callingfrommake=False):
        super(_OpChain, self).__init__(ops, _callingfrommake)
Martin Reinecke's avatar
Martin Reinecke committed
326
327
        self._domain = self._ops[-1].domain
        self._target = self._ops[0].target
Martin Reinecke's avatar
Martin Reinecke committed
328
329
330
        for i in range(1, len(self._ops)):
            if self._ops[i-1].domain != self._ops[i].target:
                raise ValueError("domain mismatch")
Martin Reinecke's avatar
Martin Reinecke committed
331

Martin Reinecke's avatar
Martin Reinecke committed
332
    def apply(self, x):
333
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
334
335
336
337
        for op in reversed(self._ops):
            x = op(x)
        return x

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
338
    def _simplify_for_constant_input_nontrivial(self, c_inp):
339
340
341
342
343
344
345
346
347
        from ..multi_domain import MultiDomain
        if not isinstance(self._domain, MultiDomain):
            return None, self

        newop = None
        for op in reversed(self._ops):
            c_inp, t_op = op.simplify_for_constant_input(c_inp)
            newop = t_op if newop is None else op(newop)
        return c_inp, newop
Martin Reinecke's avatar
Martin Reinecke committed
348

Philipp Arras's avatar
Philipp Arras committed
349
350
351
352
353
    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in self._ops)
        return "_OpChain:\n" + indent(subs)


Martin Reinecke's avatar
Martin Reinecke committed
354
355
356
357
358
359
360
361
362
class _OpProd(Operator):
    def __init__(self, op1, op2):
        from ..sugar import domain_union
        self._domain = domain_union((op1.domain, op2.domain))
        self._target = op1.target
        if op1.target != op2.target:
            raise ValueError("target mismatch")
        self._op1 = op1
        self._op2 = op2
Martin Reinecke's avatar
Martin Reinecke committed
363

Martin Reinecke's avatar
Martin Reinecke committed
364
    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
365
366
        from ..linearization import Linearization
        from ..sugar import makeOp
367
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
368
        lin = isinstance(x, Linearization)
369
370
371
        v = x._val if lin else x
        v1 = v.extract(self._op1.domain)
        v2 = v.extract(self._op2.domain)
Martin Reinecke's avatar
Martin Reinecke committed
372
        if not lin:
373
            return self._op1(v1) * self._op2(v2)
374
375
376
        wm = x.want_metric
        lin1 = self._op1(Linearization.make_var(v1, wm))
        lin2 = self._op2(Linearization.make_var(v2, wm))
Martin Reinecke's avatar
Martin Reinecke committed
377
378
        op = (makeOp(lin1._val)(lin2._jac))._myadd(
            makeOp(lin2._val)(lin1._jac), False)
379
        return lin1.new(lin1._val*lin2._val, op(x.jac))
Martin Reinecke's avatar
Martin Reinecke committed
380

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
381
    def _simplify_for_constant_input_nontrivial(self, c_inp):
382
383
384
385
386
387
388
389
390
391
392
393
394
        f1, o1 = self._op1.simplify_for_constant_input(
            c_inp.extract_part(self._op1.domain))
        f2, o2 = self._op2.simplify_for_constant_input(
            c_inp.extract_part(self._op2.domain))

        from ..multi_domain import MultiDomain
        if not isinstance(self._target, MultiDomain):
            return None, _OpProd(o1, o2)

        cc = _ConstCollector()
        cc.mult(f1, o1.target)
        cc.mult(f2, o2.target)
        return cc.constfield, _OpProd(o1, o2)
Martin Reinecke's avatar
Martin Reinecke committed
395

Philipp Arras's avatar
Philipp Arras committed
396
397
398
399
400
    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in (self._op1, self._op2))
        return "_OpProd:\n"+indent(subs)


Martin Reinecke's avatar
Martin Reinecke committed
401
402
class _OpSum(Operator):
    def __init__(self, op1, op2):
Philipp Arras's avatar
Philipp Arras committed
403
        from ..sugar import domain_union
Martin Reinecke's avatar
Martin Reinecke committed
404
405
406
407
        self._domain = domain_union((op1.domain, op2.domain))
        self._target = domain_union((op1.target, op2.target))
        self._op1 = op1
        self._op2 = op2
Philipp Arras's avatar
Philipp Arras committed
408
409

    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
410
        from ..linearization import Linearization
411
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
412
413
414
415
416
417
        lin = isinstance(x, Linearization)
        v = x._val if lin else x
        v1 = v.extract(self._op1.domain)
        v2 = v.extract(self._op2.domain)
        if not lin:
            return self._op1(v1).unite(self._op2(v2))
418
419
420
        wm = x.want_metric
        lin1 = self._op1(Linearization.make_var(v1, wm))
        lin2 = self._op2(Linearization.make_var(v2, wm))
Martin Reinecke's avatar
Martin Reinecke committed
421
        op = lin1._jac._myadd(lin2._jac, False)
Martin Reinecke's avatar
bug fix    
Martin Reinecke committed
422
        res = lin1.new(lin1._val.unite(lin2._val), op(x.jac))
Martin Reinecke's avatar
Martin Reinecke committed
423
        if lin1._metric is not None and lin2._metric is not None:
Reimar H Leike's avatar
Reimar H Leike committed
424
            from .sandwich_operator import SandwichOperator
Philipp Arras's avatar
PEP8    
Philipp Arras committed
425
426
            met = lin1._metric._myadd(lin2._metric, False)
            met = SandwichOperator.make(x.jac, met)
Reimar H Leike's avatar
Reimar H Leike committed
427
            res = res.add_metric(met)
Philipp Arras's avatar
Philipp Arras committed
428
        return res
429

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
430
    def _simplify_for_constant_input_nontrivial(self, c_inp):
431
432
433
434
435
436
437
438
439
440
441
442
443
        f1, o1 = self._op1.simplify_for_constant_input(
            c_inp.extract_part(self._op1.domain))
        f2, o2 = self._op2.simplify_for_constant_input(
            c_inp.extract_part(self._op2.domain))

        from ..multi_domain import MultiDomain
        if not isinstance(self._target, MultiDomain):
            return None, _OpSum(o1, o2)

        cc = _ConstCollector()
        cc.add(f1, o1.target)
        cc.add(f2, o2.target)
        return cc.constfield, _OpSum(o1, o2)
Philipp Arras's avatar
Philipp Arras committed
444
445
446
447

    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in (self._op1, self._op2))
        return "_OpSum:\n"+indent(subs)