probing.py 2.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

Martin Reinecke's avatar
Martin Reinecke committed
18
from .field import Field
19

Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
20

21
class StatCalculator(object):
Martin Reinecke's avatar
Martin Reinecke committed
22
23
24
25
26
27
28
29
    """Helper class to compute mean and variance of a set of inputs.

    Notes
    -----
    - the memory usage of this object is constant, i.e. it does not increase
      with the number of samples added
    - FIXME describe the kind of variance used (divided by n-1)
    """
30
31
32
33
    def __init__(self):
        self._count = 0

    def add(self, value):
Martin Reinecke's avatar
Martin Reinecke committed
34
35
36
37
38
39
40
        """Adds a sample.

        Parameters
        ----------
        value: any type that supports multiplication by a scalar and
               element-wise addition/subtraction/multiplication.
        """
41
42
43
44
45
46
        self._count += 1
        if self._count == 1:
            self._mean = 1.*value
            self._M2 = 0.*value
        else:
            delta = value - self._mean
47
            self._mean = self.mean + delta*(1./self._count)
48
            delta2 = value - self._mean
49
            self._M2 = self._M2 + delta*delta2
50
51
52

    @property
    def mean(self):
Martin Reinecke's avatar
Martin Reinecke committed
53
54
55
        """
        value type : the mean of all samples added so far.
        """
56
57
58
59
60
61
        if self._count == 0:
            raise RuntimeError
        return 1.*self._mean

    @property
    def var(self):
Martin Reinecke's avatar
Martin Reinecke committed
62
63
64
        """
        value type : the variance of all samples added so far.
        """
65
66
67
68
69
70
71
72
        if self._count < 2:
            raise RuntimeError
        return self._M2 * (1./(self._count-1))


def probe_with_posterior_samples(op, post_op, nprobes):
    sc = StatCalculator()
    for i in range(nprobes):
Martin Reinecke's avatar
Martin Reinecke committed
73
74
75
76
        if post_op is None:
            sc.add(op.draw_sample(from_inverse=True))
        else:
            sc.add(post_op(op.draw_sample(from_inverse=True)))
Martin Reinecke's avatar
Martin Reinecke committed
77
78
79

    if nprobes == 1:
        return sc.mean, None
80
    return sc.mean, sc.var
Martin Reinecke's avatar
Martin Reinecke committed
81
82
83
84
85
86
87
88
89


def probe_diagonal(op, nprobes, random_type="pm1"):
    sc = StatCalculator()
    for i in range(nprobes):
        input = Field.from_random(random_type, op.domain)
        output = op(input)
        sc.add(output.conjugate()*input)
    return sc.mean