plot.py 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

Martin Reinecke's avatar
Martin Reinecke committed
18 19
import os

20 21
import numpy as np

Martin Reinecke's avatar
fix  
Martin Reinecke committed
22 23 24
from . import dobj
from .domains.gl_space import GLSpace
from .domains.hp_space import HPSpace
Philipp Arras's avatar
Philipp Arras committed
25
from .domains.log_rg_space import LogRGSpace
Martin Reinecke's avatar
fix  
Martin Reinecke committed
26 27 28
from .domains.power_space import PowerSpace
from .domains.rg_space import RGSpace
from .field import Field
29

Martin Reinecke's avatar
Martin Reinecke committed
30 31 32 33 34 35 36 37
# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
38
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
39

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
40

Martin Reinecke's avatar
Martin Reinecke committed
41 42 43
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
44
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
45
    xc, yc = (xsize-1)*0.5, (ysize-1)*0.5
Martin Reinecke's avatar
Martin Reinecke committed
46
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
Martin Reinecke's avatar
Martin Reinecke committed
47
    u, v = 2*(u-xc)/(xc/1.02), (v-yc)/(yc/1.02)
Martin Reinecke's avatar
Martin Reinecke committed
48 49 50 51 52 53 54 55 56

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
def _rgb_data(spectral_cube):
    _xyz = np.array(
          [[0.000160, 0.000662, 0.002362, 0.007242, 0.019110,
            0.043400, 0.084736, 0.140638, 0.204492, 0.264737,
            0.314679, 0.357719, 0.383734, 0.386726, 0.370702,
            0.342957, 0.302273, 0.254085, 0.195618, 0.132349,
            0.080507, 0.041072, 0.016172, 0.005132, 0.003816,
            0.015444, 0.037465, 0.071358, 0.117749, 0.172953,
            0.236491, 0.304213, 0.376772, 0.451584, 0.529826,
            0.616053, 0.705224, 0.793832, 0.878655, 0.951162,
            1.014160, 1.074300, 1.118520, 1.134300, 1.123990,
            1.089100, 1.030480, 0.950740, 0.856297, 0.754930,
            0.647467, 0.535110, 0.431567, 0.343690, 0.268329,
            0.204300, 0.152568, 0.112210, 0.081261, 0.057930,
            0.040851, 0.028623, 0.019941, 0.013842, 0.009577,
            0.006605, 0.004553, 0.003145, 0.002175, 0.001506,
            0.001045, 0.000727, 0.000508, 0.000356, 0.000251,
            0.000178, 0.000126, 0.000090, 0.000065, 0.000046,
            0.000033],
           [0.000017, 0.000072, 0.000253, 0.000769, 0.002004,
            0.004509, 0.008756, 0.014456, 0.021391, 0.029497,
            0.038676, 0.049602, 0.062077, 0.074704, 0.089456,
            0.106256, 0.128201, 0.152761, 0.185190, 0.219940,
            0.253589, 0.297665, 0.339133, 0.395379, 0.460777,
            0.531360, 0.606741, 0.685660, 0.761757, 0.823330,
            0.875211, 0.923810, 0.961988, 0.982200, 0.991761,
            0.999110, 0.997340, 0.982380, 0.955552, 0.915175,
            0.868934, 0.825623, 0.777405, 0.720353, 0.658341,
            0.593878, 0.527963, 0.461834, 0.398057, 0.339554,
            0.283493, 0.228254, 0.179828, 0.140211, 0.107633,
            0.081187, 0.060281, 0.044096, 0.031800, 0.022602,
            0.015905, 0.011130, 0.007749, 0.005375, 0.003718,
            0.002565, 0.001768, 0.001222, 0.000846, 0.000586,
            0.000407, 0.000284, 0.000199, 0.000140, 0.000098,
            0.000070, 0.000050, 0.000036, 0.000025, 0.000018,
            0.000013],
           [0.000705, 0.002928, 0.010482, 0.032344, 0.086011,
            0.197120, 0.389366, 0.656760, 0.972542, 1.282500,
            1.553480, 1.798500, 1.967280, 2.027300, 1.994800,
            1.900700, 1.745370, 1.554900, 1.317560, 1.030200,
            0.772125, 0.570060, 0.415254, 0.302356, 0.218502,
            0.159249, 0.112044, 0.082248, 0.060709, 0.043050,
            0.030451, 0.020584, 0.013676, 0.007918, 0.003988,
            0.001091, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000]])

    MATRIX_SRGB_D65 = np.array(
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
113
            [[3.2404542, -1.5371385, -0.4985314],
114
             [-0.9692660,  1.8760108,  0.0415560],
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
115
             [0.0556434, -0.2040259,  1.0572252]])
116 117 118 119 120 121

    def _gammacorr(inp):
        mask = np.zeros(inp.shape, dtype=np.float64)
        mask[inp <= 0.0031308] = 1.
        r1 = 12.92*inp
        a = 0.055
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
122
        r2 = (1 + a) * (np.maximum(inp, 0.0031308) ** (1/2.4)) - a
123 124 125
        return r1*mask + r2*(1.-mask)

    def lambda2xyz(lam):
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
126 127 128
        lammin = 380.
        lammax = 780.
        lam = np.asarray(lam, dtype=np.float64)
129 130 131 132 133 134
        lam = np.clip(lam, lammin, lammax)

        idx = (lam-lammin)/(lammax-lammin)*(_xyz.shape[1]-1)
        ii = np.maximum(0, np.minimum(79, int(idx)))
        w1 = 1.-(idx-ii)
        w2 = 1.-w1
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
135
        c = w1*_xyz[:, ii] + w2*_xyz[:, ii+1]
136 137 138 139 140 141 142
        return c

    def getxyz(n):
        E0, E1 = 1./700., 1./400.
        E = E0 + np.arange(n)*(E1-E0)/(n-1)
        res = np.zeros((3, n), dtype=np.float64)
        for i in range(n):
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
143
            res[:, i] = lambda2xyz(1./E[i])
144 145
        return res

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
146 147 148 149 150 151 152 153 154
    def to_logscale(arr, lo, hi):
        res = arr.clip(lo, hi)
        res = np.log(res/hi)
        tmp = np.log(hi/lo)
        res += tmp
        res /= tmp
        return res

    spectral_cube = spectral_cube.reshape((-1, spectral_cube.shape[-1]))
155 156
    xyz = getxyz(spectral_cube.shape[-1])
    xyz_data = np.tensordot(spectral_cube, xyz, axes=[-1, -1])
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
157 158 159 160 161 162
#    vmax = max(xyz_data[:,0].max()/0.9505,
#               xyz_data[:,1].max(),
#               xyz_data[:,2].max()/1.0890)
    vmax = xyz_data.max()
    xyz_data /= vmax
    xyz_data = to_logscale(xyz_data, 1e-3, 1.)
163
    rgb_data = xyz_data.copy()
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
164
    it = np.nditer(xyz_data[:, 0], flags=['multi_index'])
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
165 166
    for x in range(xyz_data.shape[0]):
        rgb_data[x] = _gammacorr(np.matmul(MATRIX_SRGB_D65, xyz_data[x]))
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
167
    rgb_data = rgb_data.clip(1e-13, 1.)
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
168
    return rgb_data.reshape(spectral_cube.shape[:-1]+(-1,))
169 170


Martin Reinecke's avatar
Martin Reinecke committed
171 172
def _find_closest(A, target):
    # A must be sorted
Martin Reinecke's avatar
Martin Reinecke committed
173 174
    idx = np.clip(A.searchsorted(target), 1, len(A)-1)
    idx -= target - A[idx-1] < A[idx] - target
Martin Reinecke's avatar
Martin Reinecke committed
175 176
    return idx

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
177

Martin Reinecke's avatar
Martin Reinecke committed
178
def _makeplot(name):
179
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
180
    if dobj.rank != 0:
181
        plt.close()
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
182
        return
Martin Reinecke's avatar
Martin Reinecke committed
183 184
    if name is None:
        plt.show()
185
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
186 187
        return
    extension = os.path.splitext(name)[1]
188
    if extension in (".pdf", ".png", ".svg"):
Martin Reinecke's avatar
Martin Reinecke committed
189 190 191 192 193
        plt.savefig(name)
        plt.close()
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
194

Martin Reinecke's avatar
Martin Reinecke committed
195
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
196
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
197
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
198 199 200 201
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
202 203
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
204

Martin Reinecke's avatar
Martin Reinecke committed
205 206 207 208 209 210 211 212 213
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
260 261 262

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
263
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
264 265
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
266
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
267

Martin Reinecke's avatar
Martin Reinecke committed
268

269
def _plot1D(f, ax, **kwargs):
270
    import matplotlib.pyplot as plt
271

272 273 274 275 276
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
277 278
            if (len(dom) != 1):
                raise ValueError("input field must have exactly one domain")
279 280 281
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
282
    dom = dom[0]
Martin Reinecke's avatar
Martin Reinecke committed
283

clienhar's avatar
clienhar committed
284
    label = kwargs.pop("label", None)
285
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
286
        label = [label] * len(f)
Martin Reinecke's avatar
Martin Reinecke committed
287

Martin Reinecke's avatar
Martin Reinecke committed
288
    linewidth = kwargs.pop("linewidth", 1.)
Philipp Arras's avatar
Philipp Arras committed
289
    if not isinstance(linewidth, list):
Martin Reinecke's avatar
Martin Reinecke committed
290
        linewidth = [linewidth] * len(f)
Philipp Arras's avatar
Philipp Arras committed
291

clienhar's avatar
clienhar committed
292
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
293
    if not isinstance(alpha, list):
Martin Reinecke's avatar
Martin Reinecke committed
294
        alpha = [alpha] * len(f)
Philipp Arras's avatar
Philipp Arras committed
295

clienhar's avatar
clienhar committed
296 297 298
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
299

Martin Reinecke's avatar
Martin Reinecke committed
300
    if isinstance(dom, RGSpace):
301
        plt.yscale(kwargs.pop("yscale", "linear"))
302 303 304 305 306 307 308 309 310 311 312
        npoints = dom.shape[0]
        dist = dom.distances[0]
        xcoord = np.arange(npoints, dtype=np.float64)*dist
        for i, fld in enumerate(f):
            ycoord = fld.to_global_data()
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
        _limit_xy(**kwargs)
        if label != ([None]*len(f)):
            plt.legend()
        return
313
    elif isinstance(dom, LogRGSpace):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
314
        plt.yscale(kwargs.pop("yscale", "log"))
315 316 317 318 319 320 321 322 323 324
        npoints = dom.shape[0]
        xcoord = dom.t_0 + np.arange(npoints-1)*dom.bindistances[0]
        for i, fld in enumerate(f):
            ycoord = fld.to_global_data()[1:]
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
        _limit_xy(**kwargs)
        if label != ([None]*len(f)):
            plt.legend()
        return
Martin Reinecke's avatar
Martin Reinecke committed
325
    elif isinstance(dom, PowerSpace):
326 327
        plt.xscale(kwargs.pop("xscale", "log"))
        plt.yscale(kwargs.pop("yscale", "log"))
Philipp Arras's avatar
Philipp Arras committed
328
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
329
        for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
330
            ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
331 332
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
333
        _limit_xy(**kwargs)
334 335
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
336
        return
337 338 339 340 341 342 343 344
    raise ValueError("Field type not(yet) supported")


def _plot2D(f, ax, **kwargs):
    import matplotlib.pyplot as plt

    dom = f.domain

345 346 347 348 349 350 351 352 353 354
    if len(dom) > 2:
        raise ValueError("DomainTuple can have at most two entries.")

    # check for multifrequency plotting
    have_rgb = False
    if len(dom) == 2:
        if (not isinstance(dom[1], RGSpace)) or len(dom[1].shape) != 1:
            raise TypeError("need 1D RGSpace as second domain")
        rgb = _rgb_data(f.to_global_data())
        have_rgb = True
355 356 357 358 359

    label = kwargs.pop("label", None)

    foo = kwargs.pop("norm", None)
    norm = {} if foo is None else {'norm': foo}
360 361
    aspect = kwargs.pop("aspect", None)
    aspect = {} if foo is None else {'aspect': foo}
362 363 364 365 366

    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    dom = dom[0]
367 368
    if not have_rgb:
        cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])
369 370 371 372

    if isinstance(dom, RGSpace):
        nx, ny = dom.shape
        dx, dy = dom.distances
373 374 375 376 377 378 379 380 381 382
        if have_rgb:
            im = ax.imshow(
                rgb, extent=[0, nx*dx, 0, ny*dy], origin="lower", **norm,
                **aspect)
        else:
            im = ax.imshow(
                f.to_global_data().T, extent=[0, nx*dx, 0, ny*dy],
                vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                cmap=cmap, origin="lower", **norm, **aspect)
            plt.colorbar(im)
383 384
        _limit_xy(**kwargs)
        return
Martin Reinecke's avatar
Martin Reinecke committed
385
    elif isinstance(dom, (HPSpace, GLSpace)):
Martin Reinecke's avatar
Martin Reinecke committed
386 387 388
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
389
        if have_rgb:
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
390 391
            res = np.full(shape=res.shape+(3,), fill_value=1.,
                          dtype=np.float64)
392

Martin Reinecke's avatar
Martin Reinecke committed
393 394 395 396
        if isinstance(dom, HPSpace):
            ptg = np.empty((phi.size, 2), dtype=np.float64)
            ptg[:, 0] = theta
            ptg[:, 1] = phi
397
            base = pyHealpix.Healpix_Base(int(np.sqrt(dom.size//12)), "RING")
398 399 400 401
            if have_rgb:
                res[mask] = rgb[base.ang2pix(ptg)]
            else:
                res[mask] = f.to_global_data()[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
402 403 404 405 406 407
        else:
            ra = np.linspace(0, 2*np.pi, dom.nlon+1)
            dec = pyHealpix.GL_thetas(dom.nlat)
            ilat = _find_closest(dec, theta)
            ilon = _find_closest(ra, phi)
            ilon = np.where(ilon == dom.nlon, 0, ilon)
408 409 410 411
            if have_rgb:
                res[mask] = rgb[ilat*dom[0].nlon + ilon]
            else:
                res[mask] = f.to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
412
        plt.axis('off')
413 414 415 416 417 418
        if have_rgb:
            plt.imshow(res, origin="lower")
        else:
            plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                       cmap=cmap, origin="lower")
            plt.colorbar(orientation="horizontal")
419 420 421 422 423 424 425 426 427 428 429 430 431 432
        return
    raise ValueError("Field type not(yet) supported")


def _plot(f, ax, **kwargs):
    _register_cmaps()
    if isinstance(f, Field):
        f = [f]
    f = list(f)
    if len(f) == 0:
        raise ValueError("need something to plot")
    if not isinstance(f[0], Field):
            raise TypeError("incorrect data type")
    dom1 = f[0].domain
Martin Reinecke's avatar
Martin Reinecke committed
433 434
    if (len(dom1) == 1 and
        (isinstance(dom1[0], PowerSpace) or
435 436
            (isinstance(dom1[0], (RGSpace, LogRGSpace)) and
             len(dom1[0].shape) == 1))):
437 438 439 440 441 442
        _plot1D(f, ax, **kwargs)
        return
    else:
        if len(f) != 1:
            raise ValueError("need exactly one Field for 2D plot")
        _plot2D(f[0], ax, **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
443 444
        return
    raise ValueError("Field type not(yet) supported")
Martin Reinecke's avatar
Martin Reinecke committed
445

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
446

447 448 449 450 451 452 453 454 455 456
class Plot(object):
    def __init__(self):
        self._plots = []
        self._kwargs = []

    def add(self, f, **kwargs):
        """Add a figure to the current list of plots.

        Notes
        -----
Philipp Arras's avatar
Docs  
Philipp Arras committed
457 458
        After doing one or more calls `add()`, one needs to call `output()` to
        show or save the plot.
459 460 461

        Parameters
        ----------
Philipp Arras's avatar
Philipp Arras committed
462
        f: Field or list of Field
Philipp Arras's avatar
Philipp Arras committed
463
            If `f` is a single Field, it must be defined on a single `RGSpace`,
Martin Reinecke's avatar
typo  
Martin Reinecke committed
464
            `PowerSpace`, `HPSpace`, `GLSpace`.
Philipp Arras's avatar
Philipp Arras committed
465
            If it is a list, all list members must be Fields defined over the
466 467
            same one-dimensional `RGSpace` or `PowerSpace`.
        title: string
Philipp Arras's avatar
Docs  
Philipp Arras committed
468
            Title of the plot.
469
        xlabel: string
Philipp Arras's avatar
Philipp Arras committed
470
            Label for the x axis.
471
        ylabel: string
Philipp Arras's avatar
Philipp Arras committed
472
            Label for the y axis.
473
        [xyz]min, [xyz]max: float
Philipp Arras's avatar
Philipp Arras committed
474
            Limits for the values to plot.
475
        colormap: string
Philipp Arras's avatar
Philipp Arras committed
476
            Color map to use for the plot (if it is a 2D plot).
477
        linewidth: float or list of floats
Philipp Arras's avatar
Philipp Arras committed
478
            Line width.
479
        label: string of list of strings
Philipp Arras's avatar
Philipp Arras committed
480
            Annotation string.
481
        alpha: float or list of floats
Philipp Arras's avatar
Docs  
Philipp Arras committed
482
            Transparency value.
483 484 485 486 487 488 489 490 491 492
        """
        self._plots.append(f)
        self._kwargs.append(kwargs)

    def output(self, **kwargs):
        """Plot the accumulated list of figures.

        Parameters
        ----------
        title: string
Philipp Arras's avatar
Philipp Arras committed
493 494 495 496 497 498 499 500
            Title of the full plot.
        nx, ny: int
            Number of subplots to use in x- and y-direction.
            Default: square root of the numer of plots, rounded up.
        xsize, ysize: float
            Dimensions of the full plot in inches. Default: 6.
        name: string
            If left empty, the plot will be shown on the screen,
501
            otherwise it will be written to a file with the given name.
Philipp Arras's avatar
Philipp Arras committed
502
            Supported extensions: .png and .pdf. Default: None.
503 504 505 506 507 508
        """
        import matplotlib.pyplot as plt
        nplot = len(self._plots)
        fig = plt.figure()
        if "title" in kwargs:
            plt.suptitle(kwargs.pop("title"))
509 510 511 512 513 514 515 516
        nx = kwargs.pop("nx", 0)
        ny = kwargs.pop("ny", 0)
        if nx == ny == 0:
            nx = ny = int(np.ceil(np.sqrt(nplot)))
        elif nx == 0:
            nx = np.ceil(nplot/ny)
        elif ny == 0:
            ny = np.ceil(nplot/nx)
517 518 519 520 521 522 523 524 525 526 527 528 529
        if nx*ny < nplot:
            raise ValueError(
                'Figure dimensions not sufficient for number of plots. '
                'Available plot slots: {}, number of plots: {}'
                .format(nx*ny, nplot))
        xsize = kwargs.pop("xsize", 6)
        ysize = kwargs.pop("ysize", 6)
        fig.set_size_inches(xsize, ysize)
        for i in range(nplot):
            ax = fig.add_subplot(ny, nx, i+1)
            _plot(self._plots[i], ax, **self._kwargs[i])
        fig.tight_layout()
        _makeplot(kwargs.pop("name", None))