rg_space.py 7.87 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
17

Martin Reinecke's avatar
Martin Reinecke committed
18
from functools import reduce
Marco Selig's avatar
Marco Selig committed
19
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
20

Martin Reinecke's avatar
Martin Reinecke committed
21
from .. import dobj
Philipp Arras's avatar
Philipp Arras committed
22
23
from ..field import Field
from .structured_domain import StructuredDomain
csongor's avatar
csongor committed
24

Marco Selig's avatar
Marco Selig committed
25

Martin Reinecke's avatar
Martin Reinecke committed
26
class RGSpace(StructuredDomain):
27
    """Represents a regular Cartesian grid.
Martin Reinecke's avatar
Martin Reinecke committed
28
29
30

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
31
    shape : int or tuple of int
Martin Reinecke's avatar
Martin Reinecke committed
32
        Number of grid points or numbers of gridpoints along each axis.
Martin Reinecke's avatar
Martin Reinecke committed
33
    distances : None or float or tuple of float, optional
Philipp Arras's avatar
Philipp Arras committed
34
        Distance between two grid points along each axis.
Martin Reinecke's avatar
Martin Reinecke committed
35

Philipp Arras's avatar
Philipp Arras committed
36
37
38
        By default (distances=None):
          - If harmonic==True, all distances will be set to 1
          - If harmonic==False, the distance along each axis will be
Martin Reinecke's avatar
Martin Reinecke committed
39
40
            set to the inverse of the number of points along that axis.

Martin Reinecke's avatar
Martin Reinecke committed
41
    harmonic : bool, optional
42
        Whether the space represents a grid in position or harmonic space.
Philipp Arras's avatar
Philipp Arras committed
43
        Default: False.
Philipp Arras's avatar
Philipp Arras committed
44
45
46
47
48

    Notes
    -----
    Topologically, a n-dimensional RGSpace is a n-Torus, i.e. it has periodic
    boundary conditions.
Marco Selig's avatar
Marco Selig committed
49
    """
Martin Reinecke's avatar
Martin Reinecke committed
50
    _needed_for_hash = ["_distances", "_shape", "_harmonic"]
51

Martin Reinecke's avatar
Martin Reinecke committed
52
    def __init__(self, shape, distances=None, harmonic=False):
Martin Reinecke's avatar
Martin Reinecke committed
53
        self._harmonic = bool(harmonic)
Martin Reinecke's avatar
Martin Reinecke committed
54
55
56
        if np.isscalar(shape):
            shape = (shape,)
        self._shape = tuple(int(i) for i in shape)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
57
58
59
60
61
62
63
64
65
66
67
68
69

        if distances is None:
            if self.harmonic:
                self._distances = (1.,) * len(self._shape)
            else:
                self._distances = tuple(1./s for s in self._shape)
        elif np.isscalar(distances):
            self._distances = (float(distances),) * len(self._shape)
        else:
            temp = np.empty(len(self.shape), dtype=np.float64)
            temp[:] = distances
            self._distances = tuple(temp)

70
        self._dvol = float(reduce(lambda x, y: x*y, self._distances))
Martin Reinecke's avatar
Martin Reinecke committed
71
        self._size = int(reduce(lambda x, y: x*y, self._shape))
Marco Selig's avatar
Marco Selig committed
72

73
    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
74
75
        return ("RGSpace(shape={}, distances={}, harmonic={})"
                .format(self.shape, self.distances, self.harmonic))
76

77
78
79
80
81
82
83
84
85
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
Martin Reinecke's avatar
Martin Reinecke committed
86
87
    def size(self):
        return self._size
88

Martin Reinecke's avatar
Martin Reinecke committed
89
    @property
90
91
    def scalar_dvol(self):
        return self._dvol
92

93
    def _get_dist_array(self):
94
95
        ibegin = dobj.ibegin_from_shape(self._shape)
        res = np.arange(self.local_shape[0], dtype=np.float64) + ibegin[0]
Martin Reinecke's avatar
Martin Reinecke committed
96
97
        res = np.minimum(res, self.shape[0]-res)*self.distances[0]
        if len(self.shape) == 1:
98
            return Field.from_local_data(self, res)
Martin Reinecke's avatar
Martin Reinecke committed
99
100
        res *= res
        for i in range(1, len(self.shape)):
101
            tmp = np.arange(self.local_shape[i], dtype=np.float64) + ibegin[i]
Martin Reinecke's avatar
Martin Reinecke committed
102
103
104
            tmp = np.minimum(tmp, self.shape[i]-tmp)*self.distances[i]
            tmp *= tmp
            res = np.add.outer(res, tmp)
105
        return Field.from_local_data(self, np.sqrt(res))
theos's avatar
theos committed
106

107
108
109
110
111
    def get_k_length_array(self):
        if (not self.harmonic):
            raise NotImplementedError
        return self._get_dist_array()

112
    def get_unique_k_lengths(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
113
114
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
132
            # FIXME: this needs to improve for MPI. Maybe unique()/gather()?
Martin Reinecke's avatar
Martin Reinecke committed
133
            tmp = self.get_k_length_array().to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
134
            tmp = np.unique(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
135
136
137
138
139
140
141
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

Martin Reinecke's avatar
Martin Reinecke committed
142
143
    @staticmethod
    def _kernel(x, sigma):
144
        from ..sugar import exp
145
        return exp(x*x * (-2.*np.pi*np.pi*sigma*sigma))
Martin Reinecke's avatar
Martin Reinecke committed
146

147
    def get_fft_smoothing_kernel_function(self, sigma):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
148
149
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
150
        return lambda x: self._kernel(x, sigma)
theos's avatar
theos committed
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    def get_conv_kernel_from_func(self, func):
        """Creates a convolution kernel defined by a function.

        Parameters
        ----------
        func: function
            This function needs to take exactly one argument, which is
            distance from center (in the same units as the RGSpace distances),
            and return the kernel amplitude at that distance.

        Assumes the function to be radially symmetric,
        e.g. only dependant on distance"""
        from ..operators.harmonic_operators import HarmonicTransformOperator
        if (not self.harmonic):
            raise NotImplementedError
        op = HarmonicTransformOperator(self, self.get_default_codomain())
        dist = op.target[0]._get_dist_array()
        kernel = Field.from_local_data(op.target, func(dist.local_data))
        kernel = kernel / kernel.integrate()
        return op.adjoint_times(kernel.weight(1))

Martin Reinecke's avatar
Martin Reinecke committed
173
    def get_default_codomain(self):
Martin Reinecke's avatar
Martin Reinecke committed
174
175
176
177
178
179
180
181
        """Returns a :class:`RGSpace` object representing the (position or
        harmonic) partner domain of `self`, depending on `self.harmonic`.

        Returns
        -------
        RGSpace
            The parter domain
        """
Martin Reinecke's avatar
Martin Reinecke committed
182
183
184
185
        distances = 1. / (np.array(self.shape)*np.array(self.distances))
        return RGSpace(self.shape, distances, not self.harmonic)

    def check_codomain(self, codomain):
Martin Reinecke's avatar
Martin Reinecke committed
186
187
188
        """Raises `TypeError` if `codomain` is not a matching partner domain
        for `self`.
        """
Martin Reinecke's avatar
Martin Reinecke committed
189
190
191
192
193
194
195
196
197
198
199
200
        if not isinstance(codomain, RGSpace):
            raise TypeError("domain is not a RGSpace")

        if self.shape != codomain.shape:
            raise AttributeError("The shapes of domain and codomain must be "
                                 "identical.")

        if self.harmonic == codomain.harmonic:
            raise AttributeError("domain.harmonic and codomain.harmonic must "
                                 "not be the same.")

        # Check if the distances match, i.e. dist' = 1 / (num * dist)
201
202
203
        if not np.all(abs(np.array(self.shape) *
                          np.array(self.distances) *
                          np.array(codomain.distances)-1) < 1e-7):
Martin Reinecke's avatar
Martin Reinecke committed
204
205
206
            raise AttributeError("The grid-distances of domain and codomain "
                                 "do not match.")

207
208
    @property
    def distances(self):
Martin Reinecke's avatar
Martin Reinecke committed
209
210
211
        """tuple of float : Distance between grid points along each axis.
        The n-th entry of the tuple is the distance between neighboring
        grid points along the n-th dimension.
212
        """
213
        return self._distances