correlated_fields.py 11.8 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
20
import numpy as np
from numpy.testing import assert_allclose
21

Philipp Arras's avatar
Philipp Arras committed
22
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
23
24
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
Philipp Arras's avatar
Philipp Arras committed
25
from ..extra import check_jacobian_consistency, consistency_check
26
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
27
from ..multi_domain import MultiDomain
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.adder import Adder
29
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
31
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
32
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
34
35
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from ..operators.value_inserter import ValueInserter
from ..sugar import from_global_data, from_random, full, makeDomain


def _lognormal_moment_matching(mean, sig, key):
    mean, sig, key = float(mean), float(sig), str(key)
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
    return _normal(logmean, logsig, key).exp()


def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


class _SlopeOperator(Operator):
    def __init__(self, smooth, loglogavgslope):
        self._domain = MultiDomain.union(
            [smooth.domain, loglogavgslope.domain])
        self._target = smooth.target
Philipp Arras's avatar
Philipp Arras committed
58
59
60
61
        from ..operators.simple_linear_operators import PartialExtractor
        self._smooth = smooth @ PartialExtractor(self._domain, smooth.domain)
        self._llas = loglogavgslope @ PartialExtractor(self._domain,
                                                       loglogavgslope.domain)
Philipp Arras's avatar
Philipp Arras committed
62
63
64
        logkl = _log_k_lengths(self._target[0])
        assert logkl.shape[0] == self._target[0].shape[0] - 1
        logkl = np.insert(logkl, 0, 0)
65

Philipp Arras's avatar
Philipp Arras committed
66
        self._t = VdotOperator(from_global_data(self._target, logkl)).adjoint
67
        self._T = float(logkl[-1] - logkl[1])
Philipp Arras's avatar
Philipp Arras committed
68
69
70
71
72
        ind = (smooth.target.shape[0] - 1,)
        self._extr_op = ValueInserter(smooth.target, ind).adjoint

    def apply(self, x):
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
73
74
        smooth = self._smooth(x)
        res0 = self._llas(x)
Philipp Arras's avatar
Philipp Arras committed
75
        res1 = self._extr_op(smooth)/self._T
76
        return  self._t(res0 - res1) + smooth
Philipp Arras's avatar
Philipp Arras committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110


def _log_k_lengths(pspace):
    return np.log(pspace.k_lengths[1:])


class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
        logk_lengths = _log_k_lengths(self._target[0])
        self._logvol = logk_lengths[1:] - logk_lengths[:-1]

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
            res[0] = 0
            res[1] = 0
            res[2:] = np.cumsum(x[1])
            res[2:] = (res[2:] + res[1:-1])/2*self._logvol + x[0]
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
            x[2:] *= self._logvol/2.
111
112
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
113
114
115
116
117
118
119
120
121
122
123
124
125
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        # TODO Does not work on sphere yet
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)
Philipp Arras's avatar
Philipp Arras committed
126
127
        # FIXME Move to tests
        consistency_check(self._specsum)
Philipp Arras's avatar
Philipp Arras committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


class CorrelatedFieldMaker:
    def __init__(self):
        self._amplitudes = []

    def add_fluctuations_from_ops(self, target, fluctuations, flexibility,
                                  asperity, loglogavgslope, key):
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
        dt = twolog._logvol
        sc = np.zeros(twolog.domain.shape)
        sc[0] = sc[1] = np.sqrt(dt)
        sc = from_global_data(twolog.domain, sc)
        expander = VdotOperator(sc).adjoint
        sigmasq = expander @ flexibility

        dist = np.zeros(twolog.domain.shape)
        dist[0] += 1.
        dist = from_global_data(twolog.domain, dist)
        scale = VdotOperator(dist).adjoint @ asperity

        shift = np.ones(scale.target.shape)
        shift[0] = dt**2/12.
        shift = from_global_data(scale.target, shift)
        scale = sigmasq*(Adder(shift) @ scale).sqrt()

        smooth = twolog @ (scale*ducktape(scale.target, None, key))
        smoothslope = _SlopeOperator(smooth, loglogavgslope)

        # move to tests
        assert_allclose(
            smooth(from_random('normal', smooth.domain)).val[0:2], 0)
Philipp Arras's avatar
Philipp Arras committed
192
        consistency_check(twolog)
Philipp Arras's avatar
Philipp Arras committed
193
194
        check_jacobian_consistency(smooth, from_random('normal',
                                                       smooth.domain))
Philipp Arras's avatar
Philipp Arras committed
195
196
        check_jacobian_consistency(smoothslope,
                                   from_random('normal', smoothslope.domain))
Philipp Arras's avatar
Philipp Arras committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        # end move to tests

        normal_ampl = _Normalization(target) @ smoothslope
        vol = target[0].harmonic_partner.get_default_codomain().total_volume
        arr = np.zeros(target.shape)
        arr[1:] = vol
        expander = VdotOperator(from_global_data(target, arr)).adjoint
        mask = np.zeros(target.shape)
        mask[0] = vol
        adder = Adder(from_global_data(target, mask))
        ampl = adder @ ((expander @ fluctuations)*normal_ampl)

        # Move to tests
        # FIXME This test fails but it is not relevant for the final result
        # assert_allclose(
        #     normal_ampl(from_random('normal', normal_ampl.domain)).val[0], 1)
        assert_allclose(ampl(from_random('normal', ampl.domain)).val[0], vol)
Philipp Arras's avatar
Philipp Arras committed
214
215
        op = _Normalization(target)
        check_jacobian_consistency(op, from_random('normal', op.domain))
Philipp Arras's avatar
Philipp Arras committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        # End move to tests

        self._amplitudes.append(ampl)

    def add_fluctuations(self, target, fluctuations_mean, fluctuations_stddev,
                         flexibility_mean, flexibility_stddev, asperity_mean,
                         asperity_stddev, loglogavgslope_mean,
                         loglogavgslope_stddev, prefix):
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

        fluct = _lognormal_moment_matching(fluctuations_mean,
                                           fluctuations_stddev,
                                           prefix + 'fluctuations')
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
                                          prefix + 'flexibility')
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
                                         prefix + 'asperity')
248
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
                        prefix + 'loglogavgslope')
        self.add_fluctuations_from_ops(target, fluct, flex, asp, avgsl,
                                       prefix + 'spectrum')

    def finalize_from_op(self, zeromode):
        raise NotImplementedError

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
                 prefix,
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
            offset = float(offset)
        hspace = makeDomain(
            [dd.target[0].harmonic_partner for dd in self._amplitudes])

        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
                                         prefix + 'zeromode')
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ azm

        ht = HarmonicTransformOperator(hspace, space=0)
        pd = PowerDistributor(hspace, self._amplitudes[0].target[0], 0)
        for i in range(1, len(self._amplitudes)):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht
            pd = pd @ PowerDistributor(
                pd.domain, self._amplitudes[i].target[0], space=i)

        spaces = tuple(range(len(self._amplitudes)))
        a = ContractionOperator(pd.domain,
                                spaces[1:]).adjoint(self._amplitudes[0])
        for i in range(1, len(self._amplitudes)):
            a = a*(ContractionOperator(pd.domain, spaces[:i] + spaces[
                (i + 1):]).adjoint(self._amplitudes[i]))

        A = pd @ a
        return ht(azm*A*ducktape(hspace, None, prefix + 'xi'))

    @property
    def amplitudes(self):
        return self._amplitudes