correlated_fields.py 14.8 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20
from functools import reduce
Philipp Arras's avatar
Philipp Arras committed
21
from numpy.testing import assert_allclose
22

Philipp Arras's avatar
Philipp Arras committed
23
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
24
25
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
Philipp Arras's avatar
Philipp Arras committed
26
from ..extra import check_jacobian_consistency, consistency_check
27
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
28
from ..multi_domain import MultiDomain
Philipp Arras's avatar
Philipp Arras committed
29
from ..operators.adder import Adder
30
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
31
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
32
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
33
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
34
from ..operators.linear_operator import LinearOperator
35
from ..operators.diagonal_operator import DiagonalOperator
Philipp Arras's avatar
Philipp Arras committed
36
37
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
38
from ..operators.value_inserter import ValueInserter
39
40
from ..sugar import from_global_data, from_random, full, makeDomain, get_default_codomain

41
def _reshaper(x, shape):
42
    x = np.array(x)
43

44
45
46
47
48
49
50
51
52
53
    if x.shape == shape:
        return np.asfarray(x)
    elif x.shape in [(), (1,)]:
        return np.full(shape, x, dtype=np.float)
    else:
        raise TypeError("Shape of parameters cannot be interpreted")

def _lognormal_moment_matching(mean, sig, key,
        domain = DomainTuple.scalar_domain(), space = 0):
    domain = makeDomain(domain)
54
    mean, sig = (_reshaper(param, domain.shape) for param in (mean, sig))
55
56
57
    key = str(key)
    assert np.all(mean > 0)
    assert np.all(sig > 0)
Philipp Arras's avatar
Philipp Arras committed
58
59
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
60
    return _normal(logmean, logsig, key, domain).exp()
Philipp Arras's avatar
Philipp Arras committed
61
62


63
64
65
def _normal(mean, sig, key,
        domain = DomainTuple.scalar_domain(), space = 0):
    domain = makeDomain(domain)
66
    mean, sig = (_reshaper(param, domain.shape) for param in (mean, sig))
67
68
69
    assert np.all(sig > 0)
    return Adder(from_global_data(domain, mean)) @ (
        sig*ducktape(domain, None, key))
Philipp Arras's avatar
Philipp Arras committed
70
71


Philipp Frank's avatar
Philipp Frank committed
72
class _SlopeRemover(EndomorphicOperator):
73
    def __init__(self, domain, cooridinates, space = 0):
Philipp Frank's avatar
Philipp Frank committed
74
        self._domain = makeDomain(domain)
75
        self._sc = cooridinates / float(cooridinates[-1])
Philipp Arras's avatar
Philipp Arras committed
76

77
78
        self._space = space
        self._last = (slice(None),)*self._domain.axes[space][0] + (-1,)
Philipp Frank's avatar
Philipp Frank committed
79
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
80

Philipp Frank's avatar
Philipp Frank committed
81
82
83
84
    def apply(self,x,mode):
        self._check_input(x,mode)
        x = x.to_global_data()
        if mode == self.TIMES:
85
            res = x - x[self._last] * self._sc
Philipp Frank's avatar
Philipp Frank committed
86
        else:
87
            #NOTE Why not x.copy()?
Philipp Frank's avatar
Philipp Frank committed
88
            res = np.zeros(x.shape,dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
89
            res += x
90
            res[self._last] -= (x*self._sc).sum(axis = self._space)
Philipp Frank's avatar
Philipp Frank committed
91
92
        return from_global_data(self._tgt(mode),res)

93
def _make_slope_Operator(smooth,loglogavgslope, space = 0):
Philipp Frank's avatar
Philipp Frank committed
94
    tg = smooth.target
95
    logkl = _log_k_lengths(tg[space])
Philipp Frank's avatar
Philipp Frank committed
96
97
    logkl -= logkl[0]
    logkl = np.insert(logkl, 0, 0)
98
    noslope = _SlopeRemover(tg,logkl, space) @ smooth
Philipp Frank's avatar
Philipp Frank committed
99
100
101
    # FIXME Move to tests
    consistency_check(_SlopeRemover(tg,logkl))

102
103
104
    expander = ContractionOperator(tg, spaces = space).adjoint
    _t = DiagonalOperator(from_global_data(tg, logkl), tg, spaces = space)
    return _t @ expander @ loglogavgslope + noslope
Philipp Arras's avatar
Philipp Arras committed
105
106
107
108
109

def _log_k_lengths(pspace):
    return np.log(pspace.k_lengths[1:])

class _TwoLogIntegrations(LinearOperator):
110
    def __init__(self, target, space = None):
Philipp Arras's avatar
Philipp Arras committed
111
        self._target = makeDomain(target)
112
113
114
115
116
        assert isinstance(self.target[space], PowerSpace)
        dom = list(self._target)
        dom[space] = UnstructuredDomain((2, self.target[space].shape[0]-2))
        self._domain = makeDomain(dom)
        self._space = space
Philipp Arras's avatar
Philipp Arras committed
117
        self._capability = self.TIMES | self.ADJOINT_TIMES
118
        logk_lengths = _log_k_lengths(self._target[space])
Philipp Arras's avatar
Philipp Arras committed
119
120
121
122
        self._logvol = logk_lengths[1:] - logk_lengths[:-1]

    def apply(self, x, mode):
        self._check_input(x, mode)
123
124
125
126
127
128
129
130
131

        #Maybe make class properties
        axis = self._target.axes[self._space][0]
        sl = (slice(None),)*axis
        first = sl + (0,)
        second = sl + (1,)
        from_third = sl + (slice(2,None),)
        no_border = sl + (slice(1,-1),)
        reverse = sl + (slice(None,None,-1),)
Philipp Arras's avatar
Philipp Arras committed
132
133
134
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
135
136
137
138
139
            res[first] = 0
            res[second] = 0
            res[from_third] = np.cumsum(x[second], axis = axis)
            res[from_third] = (res[from_third] + res[no_border])/2*self._logvol + x[first]
            res[from_third] = np.cumsum(res[from_third], axis = axis)
Philipp Arras's avatar
Philipp Arras committed
140
141
142
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
143
144
145
146
147
148
            x[from_third] = np.cumsum(x[from_third][reverse], axis = axis)[reverse]
            res[first] += x[from_third]
            x[from_third] *= self._logvol/2.
            x[no_border] += x[from_third]
            res[second] += np.cumsum(x[from_third][reverse], axis = axis)[reverse]
        return from_global_data(self._tgt(mode), res)
Philipp Arras's avatar
Philipp Arras committed
149
150
151


class _Normalization(Operator):
152
    def __init__(self, domain, space = 0):
Philipp Arras's avatar
Philipp Arras committed
153
        self._domain = self._target = makeDomain(domain)
154
155
156
157
        hspace = list(self._domain)
        hspace[space] = hspace[space].harmonic_partner
        hspace = makeDomain(hspace)
        pd = PowerDistributor(hspace, power_space=self._domain[space], space = space)
Philipp Arras's avatar
Philipp Arras committed
158
        # TODO Does not work on sphere yet
159
160
161
162
        mode_multiplicity = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        mode_multiplicity[0] = 0
        self._mode_multiplicity = from_global_data(self._domain, mode_multiplicity)
        self._specsum = _SpecialSum(self._domain, space)
Philipp Arras's avatar
Philipp Arras committed
163
164
        # FIXME Move to tests
        consistency_check(self._specsum)
Philipp Arras's avatar
Philipp Arras committed
165
166
167
168
169
170
171

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
172
        return self._specsum(self._mode_multiplicity*spec)**(-0.5)*amp
Philipp Arras's avatar
Philipp Arras committed
173
174
175


class _SpecialSum(EndomorphicOperator):
176
    def __init__(self, domain, space = 0):
Philipp Arras's avatar
Philipp Arras committed
177
178
        self._domain = makeDomain(domain)
        self._capability = self.TIMES | self.ADJOINT_TIMES
179
180
        self._contractor = ContractionOperator(domain, space)
        self._zero_mode = (slice(None),)*domain.axes[space][0] + (0,)
Philipp Arras's avatar
Philipp Arras committed
181
182
183

    def apply(self, x, mode):
        self._check_input(x, mode)
184
        return self._contractor.adjoint(self._contractor(x))
Philipp Arras's avatar
Philipp Arras committed
185
186


187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
class _slice_extractor(LinearOperator):
    #FIXME it should be tested if the the domain and target are consistent with the slice
    def __init__(self, domain, target, sl):
        self._domain = makeDomain(domain)
        self._target = makeDomain(target)
        self._sl = sl
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        x = x.to_global_data()
        if mode == self.TIMES:
            res = x[self._sl]
            res = res.reshape(self._target.shape)
        else:
            res = np.zeros(self._domain.shape)
            res[self._sl] = x
        return from_global_data(self._tgt(mode), res)
    

Philipp Arras's avatar
Philipp Arras committed
207
208
209
class CorrelatedFieldMaker:
    def __init__(self):
        self._amplitudes = []
210
        self._spaces = []
Philipp Arras's avatar
Philipp Arras committed
211
212

    def add_fluctuations_from_ops(self, target, fluctuations, flexibility,
213
                                  asperity, loglogavgslope, key, space = 0):
Philipp Arras's avatar
Philipp Arras committed
214
215
216
217
218
219
220
221
222
223
224
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
225
        assert isinstance(target[space], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
226

227
        twolog = _TwoLogIntegrations(target, space)
228
229
230
231
232
233
234
235
236
237
238
239
        dt = twolog._logvol
        sl = (slice(None),)*target.axes[space][0]
        first = sl + (0,)
        second = sl + (1,)
        expander = ContractionOperator(twolog.domain, spaces = space).adjoint
        
        sqrt_t = np.zeros(twolog.domain.shape)
        sqrt_t[first] = sqrt_t[second] = np.sqrt(dt)
        sqrt_t = from_global_data(twolog.domain, sqrt_t)
        sqrt_t = DiagonalOperator(sqrt_t, twolog.domain, spaces = space)
        sigmasq = sqrt_t @ expander @ flexibility

Philipp Arras's avatar
Philipp Arras committed
240
        dist = np.zeros(twolog.domain.shape)
241
        dist[first] += 1.
Philipp Arras's avatar
Philipp Arras committed
242
        dist = from_global_data(twolog.domain, dist)
243
        dist = DiagonalOperator(dist, twolog.domain, spaces = space)
Philipp Arras's avatar
Philipp Arras committed
244

245
246
247
248
        shift = np.ones(twolog.domain.shape)
        shift[first] = dt**2/12.
        shift = from_global_data(twolog.domain, shift)
        scale = sigmasq*(Adder(shift) @ dist @ expander @ asperity).sqrt()
Philipp Arras's avatar
Philipp Arras committed
249
250

        smooth = twolog @ (scale*ducktape(scale.target, None, key))
Philipp Frank's avatar
Philipp Frank committed
251
252
        smoothslope = _make_slope_Operator(smooth,loglogavgslope)
        
Philipp Arras's avatar
Philipp Arras committed
253
254
255
        # move to tests
        assert_allclose(
            smooth(from_random('normal', smooth.domain)).val[0:2], 0)
Philipp Arras's avatar
Philipp Arras committed
256
        consistency_check(twolog)
Philipp Arras's avatar
Philipp Arras committed
257
258
        check_jacobian_consistency(smooth, from_random('normal',
                                                       smooth.domain))
Philipp Arras's avatar
Philipp Arras committed
259
260
        check_jacobian_consistency(smoothslope,
                                   from_random('normal', smoothslope.domain))
Philipp Arras's avatar
Philipp Arras committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        # end move to tests

        normal_ampl = _Normalization(target) @ smoothslope
        vol = target[0].harmonic_partner.get_default_codomain().total_volume
        arr = np.zeros(target.shape)
        arr[1:] = vol
        expander = VdotOperator(from_global_data(target, arr)).adjoint
        mask = np.zeros(target.shape)
        mask[0] = vol
        adder = Adder(from_global_data(target, mask))
        ampl = adder @ ((expander @ fluctuations)*normal_ampl)

        # Move to tests
        # FIXME This test fails but it is not relevant for the final result
        # assert_allclose(
        #     normal_ampl(from_random('normal', normal_ampl.domain)).val[0], 1)
        assert_allclose(ampl(from_random('normal', ampl.domain)).val[0], vol)
Philipp Arras's avatar
Philipp Arras committed
278
279
        op = _Normalization(target)
        check_jacobian_consistency(op, from_random('normal', op.domain))
Philipp Arras's avatar
Philipp Arras committed
280
281
282
        # End move to tests

        self._amplitudes.append(ampl)
283
        self._spaces.append(space)
Philipp Arras's avatar
Philipp Arras committed
284
285
286
287

    def add_fluctuations(self, target, fluctuations_mean, fluctuations_stddev,
                         flexibility_mean, flexibility_stddev, asperity_mean,
                         asperity_stddev, loglogavgslope_mean,
288
                         loglogavgslope_stddev, prefix, space = 0):
Philipp Arras's avatar
Philipp Arras committed
289
290
        prefix = str(prefix)

291
292
293
294
295
296
297
        parameter_domain = list(makeDomain(target))
        del parameter_domain[space]
        if parameter_domain != []:
            parameter_domain = makeDomain(parameter_domain)
        else:
            parameter_domain = DomainTuple.scalar_domain()

298
        fluct = _lognormal_moment_matching(fluctuations_mean, fluctuations_stddev,
299
                        prefix + 'fluctuations', parameter_domain, space = space)
Philipp Arras's avatar
Philipp Arras committed
300
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
301
                        prefix + 'flexibility', parameter_domain, space = space)
Philipp Arras's avatar
Philipp Arras committed
302
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
303
                        prefix + 'asperity', parameter_domain, space = space)
304
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
305
306
                        prefix + 'loglogavgslope', parameter_domain, space = space)

Philipp Arras's avatar
Philipp Arras committed
307
        self.add_fluctuations_from_ops(target, fluct, flex, asp, avgsl,
308
                                       prefix + 'spectrum', space)
Philipp Arras's avatar
Philipp Arras committed
309
310
311
312
313
314
315
316
317
318
319
320

    def finalize_from_op(self, zeromode):
        raise NotImplementedError

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
                 prefix,
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
321
        prefix = str(prefix)
Philipp Arras's avatar
Philipp Arras committed
322
        if offset is not None:
323
            offset = float(offset) 
324
325
326
327
328
329
330
331
332
        hspace = []
        zeroind = ()
        for amp, space in zip(self._amplitudes, self._spaces):
            dd =  list(amp.target)
            dd[space] = dd[space].harmonic_partner
            hspace.extend(dd)
            zeroind += (slice(None),)*space + (0,)*len(dd[space].shape)
        hspace = makeDomain(hspace)
        spaces = np.cumsum(self._spaces) + np.arange(len(self._spaces))
Philipp Arras's avatar
Philipp Arras committed
333

334
335
336
337
338
339
340
341
        parameter_domain = list(makeDomain(hspace))
        for space in self._spaces:
            del parameter_domain[space]
        if parameter_domain != []:
            parameter_domain = makeDomain(parameter_domain)
        else:
            parameter_domain = DomainTuple.scalar_domain()

Philipp Arras's avatar
Philipp Arras committed
342
343
        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
344
345
                                         prefix + 'zeromode', parameter_domain,
                                         space = tuple(self._spaces))
346

Philipp Arras's avatar
Philipp Arras committed
347
348
349
        foo = np.ones(hspace.shape)
        foo[zeroind] = 0

350
351
352
353
354
355
356
357
        ZeroModeInserter = _slice_extractor(hspace, azm.target, zeroind).adjoint

        azm = Adder(from_global_data(hspace, foo)) @ ZeroModeInserter @ azm

        #NOTE ht and pd operator able to act on several spaces might be nice
        ht = HarmonicTransformOperator(hspace, space = spaces[0])
        pd = PowerDistributor(hspace, 
                self._amplitudes[0].target[spaces[0]], spaces[0])
Philipp Arras's avatar
Philipp Arras committed
358
        for i in range(1, len(self._amplitudes)):
359
360
361
            ht = HarmonicTransformOperator(ht.target, space = spaces[i]) @ ht
            pd = pd @ PowerDistributor( pd.domain, 
                    self._amplitudes[i].target[spaces[i]], space = spaces[i])
Philipp Arras's avatar
Philipp Arras committed
362
363
364
365
366
367
368
369
370
371
372
373
374

        a = ContractionOperator(pd.domain,
                                spaces[1:]).adjoint(self._amplitudes[0])
        for i in range(1, len(self._amplitudes)):
            a = a*(ContractionOperator(pd.domain, spaces[:i] + spaces[
                (i + 1):]).adjoint(self._amplitudes[i]))

        A = pd @ a
        return ht(azm*A*ducktape(hspace, None, prefix + 'xi'))

    @property
    def amplitudes(self):
        return self._amplitudes