mask_operator.py 2.17 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Philipp Arras's avatar
Philipp Arras committed
19
20
import numpy as np

Philipp Arras's avatar
Philipp Arras committed
21
22
23
24
25
26
27
from ..domain_tuple import DomainTuple
from ..domains.unstructured_domain import UnstructuredDomain
from ..field import Field
from .linear_operator import LinearOperator


class MaskOperator(LinearOperator):
Philipp Arras's avatar
Philipp Arras committed
28
29
30
    def __init__(self, mask):
        if not isinstance(mask, Field):
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
31

Philipp Arras's avatar
Philipp Arras committed
32
33
34
        self._domain = DomainTuple.make(mask.domain)
        self._mask = np.logical_not(mask.to_global_data())
        self._target = DomainTuple.make(UnstructuredDomain(self._mask.sum()))
Philipp Arras's avatar
Philipp Arras committed
35

Philipp Arras's avatar
Philipp Arras committed
36
    def data_indices(self):
Philipp Arras's avatar
Philipp Arras committed
37
38
39
40
        if len(self.domain.shape) == 1:
            return np.arange(self.domain.shape[0])[self._mask]
        if len(self.domain.shape) == 2:
            return np.indices(self.domain.shape).transpose((1, 2, 0))[self._mask]
Philipp Arras's avatar
Philipp Arras committed
41
42
43
44

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
Philipp Arras's avatar
Philipp Arras committed
45
            res = x.to_global_data()[self._mask]
Philipp Arras's avatar
Philipp Arras committed
46
            return Field.from_global_data(self.target, res)
Philipp Arras's avatar
Philipp Arras committed
47
48
49
50
        x = x.to_global_data()
        res = np.empty(self.domain.shape, x.dtype)
        res[self._mask] = x
        res[~self._mask] = 0
Philipp Arras's avatar
Philipp Arras committed
51
        return Field.from_global_data(self.domain, res)
Philipp Arras's avatar
Philipp Arras committed
52
53
54
55
56
57
58
59
60
61
62
63

    @property
    def capability(self):
        return self.TIMES | self.ADJOINT_TIMES

    @property
    def domain(self):
        return self._domain

    @property
    def target(self):
        return self._target