field.py 22.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

Martin Reinecke's avatar
Martin Reinecke committed
19
from __future__ import division, print_function
Martin Reinecke's avatar
Martin Reinecke committed
20
from builtins import range
csongor's avatar
csongor committed
21
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
22
23
24
from .spaces.power_space import PowerSpace
from . import nifty_utilities as utilities
from .random import Random
Martin Reinecke's avatar
Martin Reinecke committed
25
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
26
from functools import reduce
27

csongor's avatar
csongor committed
28

Martin Reinecke's avatar
Martin Reinecke committed
29
class Field(object):
Theo Steininger's avatar
Theo Steininger committed
30
31
32
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
33
    metainformation (i.e. the domain) for operators to be able to work on them.
Martin Reinecke's avatar
updates    
Martin Reinecke committed
34
    In addition, Field has methods to work with power spectra.
Theo Steininger's avatar
Theo Steininger committed
35

36
37
38
39
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
40
        LMSpace or PowerSpace. It might also be a FieldArray, which is
41
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
42

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
43
    val : scalar, numpy.ndarray, Field
44
45
46
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
47

48
    dtype : type
Martin Reinecke's avatar
updates    
Martin Reinecke committed
49
        A numpy.type. Most common are float and complex.
Theo Steininger's avatar
Theo Steininger committed
50

51
52
53
54
    copy: boolean

    Attributes
    ----------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
55
    val : numpy.ndarray
Theo Steininger's avatar
Theo Steininger committed
56

Martin Reinecke's avatar
Martin Reinecke committed
57
    domain : DomainTuple
58
59
60
        See Parameters.
    dtype : type
        Contains the datatype stored in the Field.
Theo Steininger's avatar
Theo Steininger committed
61

62
63
64
65
66
67
68
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
69

70
    """
71

Theo Steininger's avatar
Theo Steininger committed
72
    # ---Initialization methods---
73

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
74
    def __init__(self, domain=None, val=None, dtype=None, copy=False):
75
        self.domain = self._parse_domain(domain=domain, val=val)
76

Martin Reinecke's avatar
Martin Reinecke committed
77
        dtype = self._infer_dtype(dtype=dtype, val=val)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
78
        if isinstance(val, Field):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
79
            if self.domain != val.domain:
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
80
                raise ValueError("Domain mismatch")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
81
            self._val = np.array(val.val, dtype=dtype, copy=copy)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
82
        elif (np.isscalar(val)):
Martin Reinecke's avatar
Martin Reinecke committed
83
            self._val = np.full(self.domain.shape, dtype=dtype, fill_value=val)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
84
        elif isinstance(val, np.ndarray):
Martin Reinecke's avatar
Martin Reinecke committed
85
            if self.domain.shape == val.shape:
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
86
                self._val = np.array(val, dtype=dtype, copy=copy)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
87
88
89
            else:
                raise ValueError("Shape mismatch")
        elif val is None:
Martin Reinecke's avatar
Martin Reinecke committed
90
            self._val = np.empty(self.domain.shape, dtype=dtype)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
91
92
        else:
            raise TypeError("unknown source type")
csongor's avatar
csongor committed
93

Martin Reinecke's avatar
Martin Reinecke committed
94
95
    @staticmethod
    def _parse_domain(domain, val=None):
96
        if domain is None:
97
            if isinstance(val, Field):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
98
99
                return val.domain
            if np.isscalar(val):
100
                return DomainTuple.make(())  # empty domain tuple
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
101
            raise TypeError("could not infer domain from value")
Martin Reinecke's avatar
Martin Reinecke committed
102
        return DomainTuple.make(domain)
103

Martin Reinecke's avatar
Martin Reinecke committed
104
    # MR: this needs some rethinking ... do we need to have at least float64?
Martin Reinecke's avatar
Martin Reinecke committed
105
106
    @staticmethod
    def _infer_dtype(dtype, val):
Martin Reinecke's avatar
Martin Reinecke committed
107
108
109
110
111
        if val is None or dtype is not None:
            return np.result_type(dtype, np.float64)
        if isinstance(val, Field):
            return val.dtype
        return np.result_type(val, np.float64)
112

113
    # ---Factory methods---
114

Martin Reinecke's avatar
Martin Reinecke committed
115
116
    @staticmethod
    def from_random(random_type, domain, dtype=np.float64, **kwargs):
117
118
119
120
121
122
123
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
124

125
126
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
127

128
129
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
130

131
132
133
134
135
136
137
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
138
        power_synthesize
139
        """
Theo Steininger's avatar
Theo Steininger committed
140

Martin Reinecke's avatar
Martin Reinecke committed
141
        domain = DomainTuple.make(domain)
142
        generator_function = getattr(Random, random_type)
143
        return Field(domain=domain, val=generator_function(dtype=dtype,
Martin Reinecke's avatar
Martin Reinecke committed
144
                     shape=domain.shape, **kwargs))
145

146
147
    # ---Powerspectral methods---

Martin Reinecke's avatar
Martin Reinecke committed
148
149
    def power_analyze(self, spaces=None, binbounds=None,
                      keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
150
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
151

Theo Steininger's avatar
Theo Steininger committed
152
153
154
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
155
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
156
        field, corresponding to the square root of the power spectrum.
157
158
159

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
160
        spaces : int *optional*
Martin Reinecke's avatar
Martin Reinecke committed
161
            The subspace for which the powerspectrum shall be computed.
Theo Steininger's avatar
Theo Steininger committed
162
163
164
            (default : None).
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
165
            if binbounds==None : bins are inferred.
166
167
168
169
170
171
172
173
174
175
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
176

177
178
        Raise
        -----
Martin Reinecke's avatar
Martin Reinecke committed
179
180
        TypeError
            Raised if any of the input field's domains is not harmonic
Theo Steininger's avatar
Theo Steininger committed
181

182
183
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
184
        out : Field
Martin Reinecke's avatar
Martin Reinecke committed
185
            The output object. Its domain is a PowerSpace and it contains
186
187
188
189
190
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
191

192
        """
Theo Steininger's avatar
Theo Steininger committed
193

Theo Steininger's avatar
Theo Steininger committed
194
        # check if all spaces in `self.domain` are either harmonic or
195
196
197
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
198
199
                print("WARNING: Field has a space in `domain` which is "
                      "neither harmonic nor a PowerSpace.")
200
201

        # check if the `spaces` input is valid
202
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
203
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
204
205
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
206
207

        if len(spaces) == 0:
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
208
            raise ValueError("No space for analysis specified.")
209

210
        if keep_phase_information:
211
            parts = [self.real*self.real, self.imag*self.imag]
212
        else:
213
            parts = [self.real*self.real + self.imag*self.imag]
214
215

        for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
216
217
            parts = [self._single_power_analyze(field=part,
                                                idx=space_index,
218
                                                binbounds=binbounds)
219
                     for part in parts]
220

221
        return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]
222

Martin Reinecke's avatar
Martin Reinecke committed
223
    @staticmethod
Martin Reinecke's avatar
Martin Reinecke committed
224
225
226
    def _single_power_analyze(field, idx, binbounds):
        power_domain = PowerSpace(field.domain[idx], binbounds)
        pindex = power_domain.pindex
Martin Reinecke's avatar
Martin Reinecke committed
227
        axes = field.domain.axes[idx]
Martin Reinecke's avatar
Martin Reinecke committed
228
229
230
231
        new_pindex_shape = [1] * len(field.shape)
        for i, ax in enumerate(axes):
            new_pindex_shape[ax] = pindex.shape[i]
        pindex = np.broadcast_to(pindex.reshape(new_pindex_shape), field.shape)
Theo Steininger's avatar
Theo Steininger committed
232

Martin Reinecke's avatar
Martin Reinecke committed
233
        power_spectrum = utilities.bincount_axis(pindex, weights=field.val,
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
234
                                                 axis=axes)
Martin Reinecke's avatar
Martin Reinecke committed
235
236
237
238
239
240
        new_rho_shape = [1] * len(power_spectrum.shape)
        new_rho_shape[axes[0]] = len(power_domain.rho)
        power_spectrum /= power_domain.rho.reshape(new_rho_shape)
        result_domain = list(field.domain)
        result_domain[idx] = power_domain
        return Field(result_domain, power_spectrum)
241

Martin Reinecke's avatar
Martin Reinecke committed
242
    def _compute_spec(self, spaces):
243
244
        if spaces is None:
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
245
246
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
247
248
249
250
251
252
253
254
255
256
257

        # create the result domain
        result_domain = list(self.domain)
        for i in spaces:
            if not isinstance(self.domain[i], PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
            result_domain[i] = self.domain[i].harmonic_partner

        spec = np.sqrt(self.val)
        for i in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
258
259
260
261
            power_space = self.domain[i]
            local_blow_up = [slice(None)]*len(spec.shape)
            # it is important to count from behind, since spec potentially
            # grows with every iteration
Martin Reinecke's avatar
Martin Reinecke committed
262
            index = self.domain.axes[i][0]-len(self.shape)
Martin Reinecke's avatar
Martin Reinecke committed
263
264
265
266
            local_blow_up[index] = power_space.pindex
            # here, the power_spectrum is distributed into the new shape
            spec = spec[local_blow_up]
        return Field(result_domain, val=spec)
267
268

    def power_synthesize(self, spaces=None, real_power=True, real_signal=True):
Theo Steininger's avatar
Theo Steininger committed
269
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
270

Theo Steininger's avatar
Theo Steininger committed
271
        This method draws a Gaussian random field in the harmonic partner
Martin Reinecke's avatar
typos    
Martin Reinecke committed
272
        domain of this field's domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
273

274
275
276
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
277
278
279
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
280
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
281
282
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
283
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
284
285
            True will result in a purely real signal-space field
            (default : True).
Theo Steininger's avatar
Theo Steininger committed
286

287
288
289
290
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
291
            stored in the `spaces` in `self`.
292

Theo Steininger's avatar
Theo Steininger committed
293
294
295
296
297
298
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

299
300
301
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
302
303
304
305
306

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

307
        """
Theo Steininger's avatar
Theo Steininger committed
308

Martin Reinecke's avatar
Martin Reinecke committed
309
        spec = self._compute_spec(spaces)
310
311
312

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
313
        result = [self.from_random('normal', mean=0., std=1.,
Martin Reinecke's avatar
Martin Reinecke committed
314
                                   domain=spec.domain,
315
316
317
318
319
320
321
                                   dtype=np.float if real_signal
                                   else np.complex)
                  for x in range(1 if real_power else 2)]

        # MR: dummy call - will be removed soon
        if real_signal:
            self.from_random('normal', mean=0., std=1.,
Martin Reinecke's avatar
Martin Reinecke committed
322
                             domain=spec.domain, dtype=np.float)
323
324

        # apply the rescaler to the random fields
325
        result[0] *= spec.real
326
        if not real_power:
327
            result[1] *= spec.imag
328

329
        return result[0] if real_power else result[0] + 1j*result[1]
330

331
    def power_synthesize_special(self, spaces=None):
Martin Reinecke's avatar
Martin Reinecke committed
332
        spec = self._compute_spec(spaces)
333
334
335

        # MR: dummy call - will be removed soon
        self.from_random('normal', mean=0., std=1.,
Martin Reinecke's avatar
Martin Reinecke committed
336
                         domain=spec.domain, dtype=np.complex)
337
338

        return spec.real
339

Theo Steininger's avatar
Theo Steininger committed
340
    # ---Properties---
341

Theo Steininger's avatar
Theo Steininger committed
342
343
    @property
    def val(self):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
344
        """ Returns the data object associated with this Field.
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
345
        No copy is made.
Theo Steininger's avatar
Theo Steininger committed
346

347
348
        Returns
        -------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
349
        out : numpy.ndarray
350
        """
Martin Reinecke's avatar
Martin Reinecke committed
351
        return self._val
csongor's avatar
csongor committed
352

Martin Reinecke's avatar
Martin Reinecke committed
353
354
355
356
    @property
    def dtype(self):
        return self._val.dtype

357
358
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
359
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
360

361
362
363
        Returns
        -------
        out : tuple
Martin Reinecke's avatar
Martin Reinecke committed
364
            The output object. The tuple contains the dimensions of the spaces
365
            in domain.
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
366
       """
Martin Reinecke's avatar
Martin Reinecke committed
367
        return self.domain.shape
csongor's avatar
csongor committed
368

369
370
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
371
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
372

Theo Steininger's avatar
Theo Steininger committed
373
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
374

375
376
377
378
379
        Returns
        -------
        out : int
            The dimension of the Field.
        """
Martin Reinecke's avatar
Martin Reinecke committed
380
        return self.domain.dim
csongor's avatar
csongor committed
381

Theo Steininger's avatar
Theo Steininger committed
382
383
    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
384
385
        """ Returns the total volume of all spaces in the domain.
        """
Martin Reinecke's avatar
Martin Reinecke committed
386
        if len(self.domain) == 0:
Theo Steininger's avatar
Theo Steininger committed
387
            return 0.
Martin Reinecke's avatar
Martin Reinecke committed
388
389
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
        return reduce(lambda x, y: x * y, volume_tuple)
390

Theo Steininger's avatar
Theo Steininger committed
391
392
393
394
    @property
    def real(self):
        """ The real part of the field (data is not copied).
        """
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
395
        return Field(self.domain, self.val.real)
Theo Steininger's avatar
Theo Steininger committed
396
397
398
399
400

    @property
    def imag(self):
        """ The imaginary part of the field (data is not copied).
        """
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
401
        return Field(self.domain, self.val.imag)
Theo Steininger's avatar
Theo Steininger committed
402

Theo Steininger's avatar
Theo Steininger committed
403
    # ---Special unary/binary operations---
404

Martin Reinecke's avatar
Martin Reinecke committed
405
    def copy(self):
406
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
407

Martin Reinecke's avatar
Martin Reinecke committed
408
        The returned object will be an identical copy of the original Field.
Theo Steininger's avatar
Theo Steininger committed
409

410
411
412
413
414
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.
        """
Martin Reinecke's avatar
Martin Reinecke committed
415
        return Field(val=self, copy=True)
csongor's avatar
csongor committed
416

417
418
419
420
421
422
    def scalar_weight(self, spaces=None):
        if np.isscalar(spaces):
            return self.domain[spaces].scalar_weight()

        if spaces is None:
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
423
        res = 1.
424
425
426
427
428
429
430
        for i in spaces:
            tmp = self.domain[i].scalar_weight()
            if tmp is None:
                return None
            res *= tmp
        return res

Theo Steininger's avatar
Theo Steininger committed
431
    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
432
        """ Weights the pixels of `self` with their invidual pixel-volume.
433
434
435
436

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
437
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
438

439
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
440
441
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
442

Theo Steininger's avatar
Theo Steininger committed
443
444
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
445

446
447
448
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
449
            The weighted field.
450
451

        """
452
        new_field = Field(val=self, copy=not inplace)
csongor's avatar
csongor committed
453

csongor's avatar
csongor committed
454
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
455
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
456
457
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
csongor's avatar
csongor committed
458

459
460
461
462
463
464
465
        fct = 1.
        for ind in spaces:
            wgt = self.domain[ind].weight()
            if np.isscalar(wgt):
                fct *= wgt
            else:
                new_shape = np.ones(len(self.shape), dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
466
467
                new_shape[self.domain.axes[ind][0]:
                          self.domain.axes[ind][-1]+1] = wgt.shape
468
                wgt = wgt.reshape(new_shape)
469
                new_field *= wgt**power
470
        fct = fct**power
Martin Reinecke's avatar
Martin Reinecke committed
471
        if fct != 1.:
472
            new_field *= fct
473

474
        return new_field
csongor's avatar
csongor committed
475

Martin Reinecke's avatar
Martin Reinecke committed
476
    def vdot(self, x=None, spaces=None, bare=False):
Theo Steininger's avatar
Theo Steininger committed
477
        """ Computes the volume-factor-aware dot product of 'self' with x.
Theo Steininger's avatar
Theo Steininger committed
478

479
480
481
        Parameters
        ----------
        x : Field
Theo Steininger's avatar
Theo Steininger committed
482
            The domain of x must contain `self.domain`
Theo Steininger's avatar
Theo Steininger committed
483

Theo Steininger's avatar
Theo Steininger committed
484
485
486
        spaces : tuple of ints
            If the domain of `self` and `x` are not the same, `spaces` specfies
            the mapping.
Theo Steininger's avatar
Theo Steininger committed
487

488
        bare : boolean
Theo Steininger's avatar
Theo Steininger committed
489
            If true, no volume factors will be included in the computation.
Theo Steininger's avatar
Theo Steininger committed
490

491
492
493
        Returns
        -------
        out : float, complex
Theo Steininger's avatar
Theo Steininger committed
494

495
        """
496
497
498
        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
499

Martin Reinecke's avatar
Martin Reinecke committed
500
        # Compute the dot respecting the fact of discrete/continuous spaces
501
502
503
504
505
506
507
508
509
510
        fct = 1.
        if bare:
            y = self
        else:
            tmp = self.scalar_weight(spaces)
            if tmp is None:
                y = self.weight(power=1)
            else:
                y = self
                fct = tmp
Theo Steininger's avatar
Theo Steininger committed
511

512
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
513
            return fct*np.vdot(y.val.ravel(), x.val.ravel())
514
515
516
        else:
            # create a diagonal operator which is capable of taking care of the
            # axes-matching
517
            from .operators.diagonal_operator import DiagonalOperator
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
518
519
            diag = DiagonalOperator(y.domain, y.conjugate(), copy=False)
            dotted = diag(x, spaces=spaces)
520
            return fct*dotted.sum(spaces=spaces)
Theo Steininger's avatar
Theo Steininger committed
521

Theo Steininger's avatar
Theo Steininger committed
522
    def norm(self):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
523
        """ Computes the L2-norm of the field values.
csongor's avatar
csongor committed
524

Theo Steininger's avatar
Theo Steininger committed
525
526
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
527
        norm : float
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
528
            The L2-norm of the field values.
csongor's avatar
csongor committed
529
530

        """
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
531
        return np.sqrt(np.abs(self.vdot(x=self)))
csongor's avatar
csongor committed
532

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
533
    def conjugate(self):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
534
        """ Returns the complex conjugate of the field.
Theo Steininger's avatar
Theo Steininger committed
535

536
537
538
539
        Returns
        -------
        cc : field
            The complex conjugated field.
csongor's avatar
csongor committed
540
541

        """
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
542
        return Field(self.domain, self.val.conjugate(), self.dtype)
csongor's avatar
csongor committed
543

Theo Steininger's avatar
Theo Steininger committed
544
    # ---General unary/contraction methods---
545

Theo Steininger's avatar
Theo Steininger committed
546
547
    def __pos__(self):
        return self.copy()
548

Theo Steininger's avatar
Theo Steininger committed
549
    def __neg__(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
550
        return Field(self.domain, -self.val, self.dtype)
csongor's avatar
csongor committed
551

Theo Steininger's avatar
Theo Steininger committed
552
    def __abs__(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
553
        return Field(self.domain, np.abs(self.val), self.dtype)
csongor's avatar
csongor committed
554

555
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
556
        if spaces is None:
557
            return getattr(self.val, op)()
Martin Reinecke's avatar
Martin Reinecke committed
558
559
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
csongor's avatar
csongor committed
560

Martin Reinecke's avatar
Martin Reinecke committed
561
        axes_list = tuple(self.domain.axes[sp_index] for sp_index in spaces)
562

Martin Reinecke's avatar
Martin Reinecke committed
563
        if len(axes_list) > 0:
Theo Steininger's avatar
Theo Steininger committed
564
            axes_list = reduce(lambda x, y: x+y, axes_list)
csongor's avatar
csongor committed
565

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
566
        # perform the contraction on the data
567
        data = getattr(self.val, op)(axis=axes_list)
csongor's avatar
csongor committed
568

Theo Steininger's avatar
Theo Steininger committed
569
570
571
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
572
        else:
Theo Steininger's avatar
Theo Steininger committed
573
            return_domain = tuple(self.domain[i]
Martin Reinecke's avatar
Martin Reinecke committed
574
                                  for i in range(len(self.domain))
Theo Steininger's avatar
Theo Steininger committed
575
                                  if i not in spaces)
576

Martin Reinecke's avatar
updates    
Martin Reinecke committed
577
            return Field(domain=return_domain, val=data, copy=False)
csongor's avatar
csongor committed
578

579
580
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
581

582
583
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
584

585
586
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
587

588
589
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
590

591
592
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
593

594
595
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
596

597
598
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
599

600
601
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
602

603
604
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
605

Theo Steininger's avatar
Theo Steininger committed
606
    # ---General binary methods---
csongor's avatar
csongor committed
607

608
    def _binary_helper(self, other, op):
csongor's avatar
csongor committed
609
        # if other is a field, make sure that the domains match
610
        if isinstance(other, Field):
611
612
            if other.domain != self.domain:
                raise ValueError("domains are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
613
614
            tval = getattr(self.val, op)(other.val)
            return self if tval is self.val else Field(self.domain, tval)
csongor's avatar
csongor committed
615

Martin Reinecke's avatar
Martin Reinecke committed
616
617
        tval = getattr(self.val, op)(other)
        return self if tval is self.val else Field(self.domain, tval)
csongor's avatar
csongor committed
618
619

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
620
        return self._binary_helper(other, op='__add__')
621

622
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
623
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
624
625

    def __iadd__(self, other):
626
        return self._binary_helper(other, op='__iadd__')
csongor's avatar
csongor committed
627
628

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
629
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
630
631

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
632
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
633
634

    def __isub__(self, other):
635
        return self._binary_helper(other, op='__isub__')
csongor's avatar
csongor committed
636
637

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
638
        return self._binary_helper(other, op='__mul__')
639

640
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
641
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
642
643

    def __imul__(self, other):
644
        return self._binary_helper(other, op='__imul__')
csongor's avatar
csongor committed
645
646

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
647
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
648

Martin Reinecke's avatar
Martin Reinecke committed
649
650
651
    def __truediv__(self, other):
        return self._binary_helper(other, op='__truediv__')

csongor's avatar
csongor committed
652
    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
653
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
654

Martin Reinecke's avatar
Martin Reinecke committed
655
656
657
    def __rtruediv__(self, other):
        return self._binary_helper(other, op='__rtruediv__')

csongor's avatar
csongor committed
658
    def __idiv__(self, other):
659
        return self._binary_helper(other, op='__idiv__')
660

csongor's avatar
csongor committed
661
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
662
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
663
664

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
665
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
666
667

    def __ipow__(self, other):
668
        return self._binary_helper(other, op='__ipow__')
csongor's avatar
csongor committed
669
670

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
671
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
672
673

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
674
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
675
676
677
678
679

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
680
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
681
682
683
684
685

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
686
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
687
688

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
689
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
690
691

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
692
693
694
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
695
        return "<nifty2go.Field>"
Theo Steininger's avatar
Theo Steininger committed
696
697
698
699

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
Martin Reinecke's avatar
Martin Reinecke committed
700
        return "nifty2go.Field instance\n- domain      = " + \
Theo Steininger's avatar
Theo Steininger committed
701
               repr(self.domain) + \
702
               "\n- val         = " + repr(self.val) + \
Theo Steininger's avatar
Theo Steininger committed
703
704
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)