nifty_mpi_data.py 63.5 KB
Newer Older
ultimanet's avatar
ultimanet committed
1
# -*- coding: utf-8 -*-
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2015 Max-Planck-Society
##
## Author: Theo Steininger
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.


ultimanet's avatar
ultimanet committed
24
25
26
27
28

##initialize the 'found-packages'-dictionary 
found = {}

import numpy as np
Ultimanet's avatar
Ultimanet committed
29
from nifty_about import about
ultimanet's avatar
ultimanet committed
30
31

try:
32
    from mpi4py import MPI
ultimanet's avatar
ultimanet committed
33
34
    found[MPI] = True
except(ImportError): 
35
    import mpi_dummy as MPI
ultimanet's avatar
ultimanet committed
36
37
38
39
40
41
42
43
44
    found[MPI] = False

try:
    import pyfftw
    found['pyfftw'] = True
except(ImportError):       
    found['pyfftw'] = False

try:
45
    import h5py
ultimanet's avatar
ultimanet committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    found['h5py'] = True
    found['h5py_parallel'] = h5py.get_config().mpi
except(ImportError):
    found['h5py'] = False
    found['h5py_parallel'] = False

   


class distributed_data_object(object):
    """

        NIFTY class for distributed data

        Parameters
        ----------
        global_data : {tuple, list, numpy.ndarray} *at least 1-dimensional*
            Initial data which will be casted to a numpy.ndarray and then 
            stored according to the distribution strategy. The global_data's
            shape overwrites global_shape.
        global_shape : tuple of ints, *optional*
            If no global_data is supplied, global_shape can be used to
            initialize an empty distributed_data_object
        dtype : type, *optional*
            If an explicit dtype is supplied, the given global_data will be 
            casted to it.            
        distribution_strategy : {'fftw' (default), 'not'}, *optional*
            Specifies the way, how global_data will be distributed to the 
            individual nodes. 
            'fftw' follows the distribution strategy of pyfftw.
            'not' does not distribute the data at all. 
            

        Attributes
        ----------
        data : numpy.ndarray
            The numpy.ndarray in which the individual node's data is stored.
        dtype : type
            Data type of the data object.
        distribution_strategy : string
            Name of the used distribution_strategy
        distributor : distributor
            The distributor object which takes care of all distribution and 
            consolidation of the data. 
        shape : tuple of int
            The global shape of the data
            
        Raises
        ------
        TypeError : 
            If the supplied distribution strategy is not known. 
        
    """
Ultimanet's avatar
Ultimanet committed
99
100
101
    def __init__(self,  global_data=None, global_shape=None, dtype=None, 
                 distribution_strategy='fftw', hermitian=False, 
                 *args, **kwargs):
ultimanet's avatar
ultimanet committed
102
        if global_data != None:
Ultimanet's avatar
Ultimanet committed
103
            if np.isscalar(global_data):
104
105
106
107
                global_data_input = None
                dtype = np.array(global_data).dtype.type
            else:
                global_data_input = np.array(global_data, copy=True, order='C')
ultimanet's avatar
ultimanet committed
108
109
        else:
            global_data_input = None
110

Ultimanet's avatar
Ultimanet committed
111
112
113
114
115
116
        self.hermitian = False

        self.distributor = self._get_distributor(distribution_strategy)(
                            global_data=global_data_input, 
                            global_shape=global_shape, 
                            dtype=dtype, **kwargs)
Ultimanet's avatar
Ultimanet committed
117

Ultimanet's avatar
Ultimanet committed
118
119
        self.set_full_data(data=global_data_input, hermitian=hermitian, 
                           **kwargs)
ultimanet's avatar
ultimanet committed
120
        
121
            
ultimanet's avatar
ultimanet committed
122
123
124
125
        self.distribution_strategy = distribution_strategy
        self.dtype = self.distributor.dtype
        self.shape = self.distributor.global_shape
        
126
127
        self.init_args = args 
        self.init_kwargs = kwargs
128
129
        
        ## If the input data was a scalar, set the whole array to this value
Ultimanet's avatar
Ultimanet committed
130
        if global_data != None and np.isscalar(global_data):
Ultimanet's avatar
Ultimanet committed
131
132
133
            temp = np.empty(self.distributor.local_shape)
            temp.fill(global_data)
            self.set_local_data(temp)
134
            self.hermitian = True
135
        
Ultimanet's avatar
Ultimanet committed
136
137
138
139
140
141
142
143
144
    def copy(self, dtype=None, distribution_strategy=None, **kwargs):
        temp_d2o = self.copy_empty(dtype=dtype, 
                                   distribution_strategy=distribution_strategy, 
                                   **kwargs)     
        if distribution_strategy == None or \
            distribution_strategy == self.distribution_strategy:
            temp_d2o.set_local_data(self.get_local_data(), copy=True)
        else:
            temp_d2o.set_full_data(self.get_full_data())
145
        temp_d2o.hermitian = self.hermitian
146
147
        return temp_d2o
    
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    def copy_empty(self, global_shape=None, dtype=None, 
                   distribution_strategy=None, **kwargs):
        if global_shape == None:
            global_shape = self.shape
        if dtype == None:
            dtype = self.dtype
        if distribution_strategy == None:
            distribution_strategy = self.distribution_strategy

        kwargs.update(self.init_kwargs)
        
        temp_d2o = distributed_data_object(global_shape=global_shape,
                                           dtype=dtype,
                                           distribution_strategy=distribution_strategy,
162
                                           *self.init_args,
163
                                           **kwargs)
164
165
        return temp_d2o
    
166
    def apply_scalar_function(self, function, inplace=False, dtype=None):
Ultimanet's avatar
Ultimanet committed
167
168
169
        if inplace == True:        
            temp = self
        else:
170
            temp = self.copy_empty(dtype=dtype)
Ultimanet's avatar
Ultimanet committed
171
172
173
174
175

        try: 
            temp.data[:] = function(self.data)
        except:
            temp.data[:] = np.vectorize(function)(self.data)
176
        
Ultimanet's avatar
Ultimanet committed
177
178
179
180
181
182
183
        temp.hermitian = False
        return temp
    
    def apply_generator(self, generator):
        self.set_local_data(generator(self.distributor.local_shape))
        self.hermitian = False
            
ultimanet's avatar
ultimanet committed
184
185
186
187
188
189
    def __str__(self):
        return self.data.__str__()
    
    def __repr__(self):
        return '<distributed_data_object>\n'+self.data.__repr__()
    
Ultimanet's avatar
Ultimanet committed
190
    def __eq__(self, other):
Ultimanet's avatar
Ultimanet committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        result = self.copy_empty(dtype = np.bool)
        ## Case 1: 'other' is a scalar
        ## -> make point-wise comparison
        if np.isscalar(other):
            result.set_local_data(self.get_local_data(copy = False) == other)
            return result        

        ## Case 2: 'other' is a numpy array or a distributed_data_object
        ## -> extract the local data and make point-wise comparison
        elif isinstance(other, np.ndarray) or\
        isinstance(other, distributed_data_object):
            temp_data = self.distributor.extract_local_data(other)
            result.set_local_data(self.get_local_data(copy=False) == temp_data)
            return result
        
        ## Case 3: 'other' is None
        elif other == None:
            return False
        
        ## Case 4: 'other' is something different
        ## -> make a numpy casting and make a recursion
        else:
            temp_other = np.array(other)
            return self.__eq__(temp_other)
            
            
        
    
    def equal(self, other):
Ultimanet's avatar
Ultimanet committed
220
221
222
223
224
225
226
227
228
        if other is None:
            return False
        try:
            assert(self.dtype == other.dtype)
            assert(self.shape == other.shape)
            assert(self.init_args == other.init_args)
            assert(self.init_kwargs == other.init_kwargs)
            assert(self.distribution_strategy == other.distribution_strategy)
            assert(np.all(self.data == other.data))
Ultimanet's avatar
Ultimanet committed
229
        except(AssertionError, AttributeError):
Ultimanet's avatar
Ultimanet committed
230
231
232
233
234
235
236
            return False
        else:
            return True
        

            
    
237
    def __pos__(self):
238
        temp_d2o = self.copy_empty()
239
240
241
        temp_d2o.set_local_data(data = self.get_local_data())
        return temp_d2o
        
ultimanet's avatar
ultimanet committed
242
    def __neg__(self):
243
        temp_d2o = self.copy_empty()
ultimanet's avatar
ultimanet committed
244
245
246
        temp_d2o.set_local_data(data = self.get_local_data().__neg__()) 
        return temp_d2o
    
247
    def __abs__(self):
Ultimanet's avatar
Ultimanet committed
248
249
250
251
252
253
254
255
256
257
258
259
        ## translate complex dtypes
        if self.dtype == np.complex64:
            new_dtype = np.float32
        elif self.dtype == np.complex128:
            new_dtype = np.float64
        elif self.dtype == np.complex:
            new_dtype = np.float
        elif issubclass(self.dtype, np.complexfloating):
            new_dtype = np.float
        else:
            new_dtype = self.dtype
        temp_d2o = self.copy_empty(dtype = new_dtype)
260
261
        temp_d2o.set_local_data(data = self.get_local_data().__abs__()) 
        return temp_d2o
ultimanet's avatar
ultimanet committed
262
            
263
    def __builtin_helper__(self, operator, other, inplace=False):
Ultimanet's avatar
Ultimanet committed
264
265
266
267
268
        ## Case 1: other is not a scalar
        if not (np.isscalar(other) or np.shape(other) == (1,)):
##            if self.shape != other.shape:            
##                raise AttributeError(about._errors.cstring(
##                    "ERROR: Shapes do not match!")) 
269
270
271
272
            try:            
                hermitian_Q = other.hermitian
            except(AttributeError):
                hermitian_Q = False
Ultimanet's avatar
Ultimanet committed
273
274
275
            ## extract the local data from the 'other' object
            temp_data = self.distributor.extract_local_data(other)
            temp_data = operator(temp_data)
Ultimanet's avatar
Ultimanet committed
276
            
277
278
279
280
        ## Case 2: other is a real scalar -> preserve hermitianity
        elif np.isreal(other) or (self.dtype not in (np.complex, np.complex128,
                                                np.complex256)):
            hermitian_Q = self.hermitian
ultimanet's avatar
ultimanet committed
281
            temp_data = operator(other)
282
283
284
285
        ## Case 3: other is complex
        else:
            hermitian_Q = False
            temp_data = operator(other)        
Ultimanet's avatar
Ultimanet committed
286
        ## write the new data into a new distributed_data_object        
287
288
289
290
        if inplace == True:
            temp_d2o = self
        else:
            temp_d2o = self.copy_empty()        
ultimanet's avatar
ultimanet committed
291
        temp_d2o.set_local_data(data=temp_data)
292
        temp_d2o.hermitian = hermitian_Q
ultimanet's avatar
ultimanet committed
293
        return temp_d2o
294
    """
Ultimanet's avatar
Ultimanet committed
295
    def __inplace_builtin_helper__(self, operator, other):
296
        ## Case 1: other is not a scalar
Ultimanet's avatar
Ultimanet committed
297
298
299
        if not (np.isscalar(other) or np.shape(other) == (1,)):        
            temp_data = self.distributor.extract_local_data(other)
            temp_data = operator(temp_data)
300
301
302
        ## Case 2: other is a real scalar -> preserve hermitianity
        elif np.isreal(other):
            hermitian_Q = self.hermitian
Ultimanet's avatar
Ultimanet committed
303
            temp_data = operator(other)
304
305
306
        ## Case 3: other is complex
        else:
            temp_data = operator(other)        
Ultimanet's avatar
Ultimanet committed
307
        self.set_local_data(data=temp_data)
308
        self.hermitian = hermitian_Q
Ultimanet's avatar
Ultimanet committed
309
        return self
310
    """ 
Ultimanet's avatar
Ultimanet committed
311
    
ultimanet's avatar
ultimanet committed
312
313
314
315
316
    def __add__(self, other):
        return self.__builtin_helper__(self.get_local_data().__add__, other)

    def __radd__(self, other):
        return self.__builtin_helper__(self.get_local_data().__radd__, other)
Ultimanet's avatar
Ultimanet committed
317
318

    def __iadd__(self, other):
319
320
321
        return self.__builtin_helper__(self.get_local_data().__iadd__, 
                                               other,
                                               inplace = True)
Ultimanet's avatar
Ultimanet committed
322

ultimanet's avatar
ultimanet committed
323
324
325
326
327
328
329
    def __sub__(self, other):
        return self.__builtin_helper__(self.get_local_data().__sub__, other)
    
    def __rsub__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rsub__, other)
    
    def __isub__(self, other):
330
331
332
        return self.__builtin_helper__(self.get_local_data().__isub__, 
                                               other,
                                               inplace = True)
ultimanet's avatar
ultimanet committed
333
334
335
336
337
338
339
        
    def __div__(self, other):
        return self.__builtin_helper__(self.get_local_data().__div__, other)
    
    def __rdiv__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rdiv__, other)

Ultimanet's avatar
Ultimanet committed
340
    def __idiv__(self, other):
341
342
343
        return self.__builtin_helper__(self.get_local_data().__idiv__, 
                                               other,
                                               inplace = True)
Ultimanet's avatar
Ultimanet committed
344

ultimanet's avatar
ultimanet committed
345
    def __floordiv__(self, other):
Ultimanet's avatar
Ultimanet committed
346
347
        return self.__builtin_helper__(self.get_local_data().__floordiv__, 
                                       other)    
ultimanet's avatar
ultimanet committed
348
    def __rfloordiv__(self, other):
Ultimanet's avatar
Ultimanet committed
349
350
351
        return self.__builtin_helper__(self.get_local_data().__rfloordiv__, 
                                       other)
    def __ifloordiv__(self, other):
352
353
354
        return self.__builtin_helper__(
                    self.get_local_data().__ifloordiv__, other,
                                               inplace = True)
ultimanet's avatar
ultimanet committed
355
356
357
358
359
360
361
362
    
    def __mul__(self, other):
        return self.__builtin_helper__(self.get_local_data().__mul__, other)
    
    def __rmul__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rmul__, other)

    def __imul__(self, other):
363
364
365
        return self.__builtin_helper__(self.get_local_data().__imul__, 
                                               other,
                                               inplace = True)
Ultimanet's avatar
Ultimanet committed
366

ultimanet's avatar
ultimanet committed
367
368
369
370
371
372
373
    def __pow__(self, other):
        return self.__builtin_helper__(self.get_local_data().__pow__, other)
 
    def __rpow__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rpow__, other)

    def __ipow__(self, other):
374
375
376
        return self.___builtin_helper__(self.get_local_data().__ipow__, 
                                               other,
                                               inplace = True)
Ultimanet's avatar
Ultimanet committed
377
   
378
379
    def __len__(self):
        return self.shape[0]
380
    
381
382
383
    def dim(self):
        return np.prod(self.shape)
        
384
385
386
387
388
389
390
391
    def vdot(self, other):
        if isinstance(other, distributed_data_object):        
            other = other.get_local_data()
        local_vdot = np.vdot(self.get_local_data(), other)
        local_vdot_list = self.distributor._allgather(local_vdot)
        global_vdot = np.sum(local_vdot_list)
        return global_vdot
            
Ultimanet's avatar
Ultimanet committed
392

393
    
ultimanet's avatar
ultimanet committed
394
    def __getitem__(self, key):
Ultimanet's avatar
Ultimanet committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
        ## Case 1: key is a boolean array.
        ## -> take the local data portion from key, use this for data 
        ## extraction, and then merge the result in a flat numpy array
        if isinstance(key, np.ndarray):
            found = 'ndarray'
            found_boolean = (key.dtype.type == np.bool)
        elif isinstance(key, distributed_data_object):
            found = 'd2o'
            found_boolean = (key.dtype == np.bool)
        else:
            found = 'other'
                
        if (found == 'ndarray' or found == 'd2o') and found_boolean == True:
            ## extract the data of local relevance
            local_bool_array = self.distributor.extract_local_data(key)
            local_results = self.get_local_data(copy=False)[local_bool_array]
            global_results = self.distributor._allgather(local_results)
            global_results = np.concatenate(global_results)
            return global_results            
            
        else:
            return self.get_data(key)
ultimanet's avatar
ultimanet committed
417
418
419
420
    
    def __setitem__(self, key, data):
        self.set_data(data, key)
        
421
    def _contraction_helper(self, function, **kwargs):
422
423
424
425
426
427
        local = function(self.data, **kwargs)
        local_list = self.distributor._allgather(local)
        global_ = function(local_list, axis=0)
        return global_
        
    def amin(self, **kwargs):
428
        return self._contraction_helper(np.amin, **kwargs)
429
430

    def nanmin(self, **kwargs):
431
        return self._contraction_helper(np.nanmin, **kwargs)
432
433
        
    def amax(self, **kwargs):
434
        return self._contraction_helper(np.amax, **kwargs)
435
436
    
    def nanmax(self, **kwargs):
437
        return self._contraction_helper(np.nanmax, **kwargs)
Ultimanet's avatar
Ultimanet committed
438
    
439
440
441
442
443
444
    def sum(self, **kwargs):
        return self._contraction_helper(np.sum, **kwargs)

    def prod(self, **kwargs):
        return self._contraction_helper(np.prod, **kwargs)        
        
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    def mean(self, power=1):
        ## compute the local means and the weights for the mean-mean. 
        local_mean = np.mean(self.data**power)
        local_weight = np.prod(self.data.shape)
        ## collect the local means and cast the result to a ndarray
        local_mean_weight_list = self.distributor._allgather((local_mean, 
                                                              local_weight))
        local_mean_weight_list =np.array(local_mean_weight_list)   
        ## compute the denominator for the weighted mean-mean                                                           
        global_weight = np.sum(local_mean_weight_list[:,1])
        ## compute the numerator
        numerator = np.sum(local_mean_weight_list[:,0]*\
            local_mean_weight_list[:,1])
        global_mean = numerator/global_weight
        return global_mean

    def var(self):
        mean_of_the_square = self.mean(power=2)
        square_of_the_mean = self.mean()**2
        return mean_of_the_square - square_of_the_mean
    
    def std(self):
        return np.sqrt(self.var())
        
    def _argmin_argmax_flat_helper(self, function):
        local_argmin = function(self.data)
        local_argmin_value = self.data[np.unravel_index(local_argmin, 
                                                        self.data.shape)]
        globalized_local_argmin = self.distributor.globalize_flat_index(local_argmin)                                                       
        local_argmin_list = self.distributor._allgather((local_argmin_value, 
                                                         globalized_local_argmin))
        local_argmin_list = np.array(local_argmin_list, dtype=[('value', int),
                                                               ('index', int)])    
        return local_argmin_list
        
    def argmin_flat(self):
        local_argmin = np.argmin(self.data)
        local_argmin_value = self.data[np.unravel_index(local_argmin, 
                                                        self.data.shape)]
        globalized_local_argmin = self.distributor.globalize_flat_index(local_argmin)                                                       
        local_argmin_list = self.distributor._allgather((local_argmin_value, 
                                                         globalized_local_argmin))
        local_argmin_list = np.array(local_argmin_list, dtype=[('value', int),
                                                               ('index', int)])    
        local_argmin_list = np.sort(local_argmin_list, order=['value', 'index'])        
        return local_argmin_list[0][1]
    
    def argmax_flat(self):
        local_argmax = np.argmax(self.data)
        local_argmax_value = -self.data[np.unravel_index(local_argmax, 
                                                        self.data.shape)]
        globalized_local_argmax = self.distributor.globalize_flat_index(local_argmax)                                                       
        local_argmax_list = self.distributor._allgather((local_argmax_value, 
                                                         globalized_local_argmax))
        local_argmax_list = np.array(local_argmax_list, dtype=[('value', int),
                                                               ('index', int)])         
        return local_argmax_list[0][1]
        

    def argmin(self):    
        return np.unravel_index(self.argmin_flat(), self.shape)
    
    def argmax(self):
        return np.unravel_index(self.argmax_flat(), self.shape)
    
    def conjugate(self):
        temp_d2o = self.copy_empty()
        temp_data = np.conj(self.get_local_data())
        temp_d2o.set_local_data(temp_data)
        return temp_d2o

    
    def conj(self):
        return self.conjugate()      
        
    def median(self):
Ultimanet's avatar
Ultimanet committed
521
        about.warnings.cprint(\
522
523
524
525
            "WARNING: The current implementation of median is very expensive!")
        median = np.median(self.get_full_data())
        return median
        
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    def iscomplex(self):
        temp_d2o = self.copy_empty(dtype=bool)
        temp_d2o.set_local_data(np.iscomplex(self.data))
        return temp_d2o
    
    def isreal(self):
        temp_d2o = self.copy_empty(dtype=bool)
        temp_d2o.set_local_data(np.isreal(self.data))
        return temp_d2o
    
    def is_completely_real(self):
        local_realiness = np.all(self.isreal())
        global_realiness = self.distributor._allgather(local_realiness)
        return np.all(global_realiness)
    
Ultimanet's avatar
Ultimanet committed
541
    def set_local_data(self, data, hermitian=False, copy=False):
ultimanet's avatar
ultimanet committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
        """
            Stores data directly in the local data attribute. No distribution 
            is done. The shape of the data must fit the local data attributes
            shape.

            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be stored in the local data attribute.
            
            Returns
            -------
            None
        
        """
Ultimanet's avatar
Ultimanet committed
557
558
        self.hermitian = hermitian
        self.data = np.array(data, dtype=self.dtype, copy=copy, order='C')
ultimanet's avatar
ultimanet committed
559
    
Ultimanet's avatar
Ultimanet committed
560
    def set_data(self, data, key, hermitian=False, *args, **kwargs):
ultimanet's avatar
ultimanet committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
        """
            Stores the supplied data in the region which is specified by key. 
            The data is distributed according to the distribution strategy. If
            the individual nodes get different key-arguments. Their data is 
            processed one-by-one.
            
            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be distributed.
            key : int, slice, tuple of int or slice
                The key is the object which specifies the region, where data 
                will be stored in.                
            
            Returns
            -------
            None
        
        """
Ultimanet's avatar
Ultimanet committed
580
        self.hermitian = hermitian
ultimanet's avatar
ultimanet committed
581
        (slices, sliceified) = self.__sliceify__(key)        
Ultimanet's avatar
Ultimanet committed
582
583
584
585
        self.distributor.disperse_data(data=self.data, 
                        to_slices = slices,
                        data_update = self.__enfold__(data, sliceified), 
                        *args, **kwargs)        
ultimanet's avatar
ultimanet committed
586
    
Ultimanet's avatar
Ultimanet committed
587
    def set_full_data(self, data, hermitian=False, **kwargs):
ultimanet's avatar
ultimanet committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
        """
            Distributes the supplied data to the nodes. The shape of data must 
            match the shape of the distributed_data_object.
            
            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be distributed.
            
            Notes
            -----
            set_full_data(foo) is equivalent to set_data(foo,slice(None)) but 
            faster.
        
            Returns
            -------
            None
        
        """
Ultimanet's avatar
Ultimanet committed
607
        self.hermitian = hermitian
608
        self.data = self.distributor.distribute_data(data=data, **kwargs)
ultimanet's avatar
ultimanet committed
609
610
    

Ultimanet's avatar
Ultimanet committed
611
    def get_local_data(self, key=(slice(None),), copy=True):
ultimanet's avatar
ultimanet committed
612
613
614
615
616
617
618
619
620
621
622
623
624
        """
            Loads data directly from the local data attribute. No consolidation 
            is done. 

            Parameters
            ----------
            key : int, slice, tuple of int or slice
                The key which will be used to access the data. 
            
            Returns
            -------
            self.data[key] : numpy.ndarray
        
Ultimanet's avatar
Ultimanet committed
625
        """
Ultimanet's avatar
Ultimanet committed
626
627
628
629
        if copy == True:
            return self.data[key]        
        if copy == False:
            return self.data
ultimanet's avatar
ultimanet committed
630
        
631
    def get_data(self, key, **kwargs):
ultimanet's avatar
ultimanet committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        """
            Loads data from the region which is specified by key. The data is 
            consolidated according to the distribution strategy. If the 
            individual nodes get different key-arguments, they get individual
            data. 
            
            Parameters
            ----------
        
            key : int, slice, tuple of int or slice
                The key is the object which specifies the region, where data 
                will be loaded from.                 
            
            Returns
            -------
            global_data[key] : numpy.ndarray
        
        """
650
651
        (slices, sliceified) = self.__sliceify__(key)
        result = self.distributor.collect_data(self.data, slices, **kwargs)        
ultimanet's avatar
ultimanet committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
        return self.__defold__(result, sliceified)
        
    
    
    def get_full_data(self, target_rank='all'):
        """
            Fully consolidates the distributed data. 
            
            Parameters
            ----------
            target_rank : 'all' (default), int *optional*
                If only one node should recieve the full data, it can be 
                specified here.
            
            Notes
            -----
            get_full_data() is equivalent to get_data(slice(None)) but 
            faster.
        
            Returns
            -------
            None
        """

        return self.distributor.consolidate_data(self.data, target_rank)

Ultimanet's avatar
Ultimanet committed
678
679
680
681
682
683
684
685
    def inject(self, to_slices=(slice(None),), data=None, 
               from_slices=(slice(None),)):
        if data == None:
            return self
        
        self.distributor.inject(self.data, to_slices, data, from_slices)
        
        
ultimanet's avatar
ultimanet committed
686
687
688
689
690
691
    def _get_distributor(self, distribution_strategy):
        '''
            Comments:
              - The distributor's get_data and set_data functions MUST be 
                supplied with a tuple of slice objects. In case that there was 
                a direct integer involved, the unfolding will be done by the
692
                helper functions __sliceify__, __enfold__ and __defold__.
ultimanet's avatar
ultimanet committed
693
694
695
696
697
698
699
        '''
        
        distributor_dict={
            'fftw':     _fftw_distributor,
            'not':      _not_distributor
        }
        if not distributor_dict.has_key(distribution_strategy):
Ultimanet's avatar
Ultimanet committed
700
            raise TypeError(about._errors.cstring("ERROR: Unknown distribution strategy supplied."))
ultimanet's avatar
ultimanet committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
        return distributor_dict[distribution_strategy]
      
    def save(self, alias, path=None, overwriteQ=True):
        
        """
            Saves a distributed_data_object to disk utilizing h5py.
            
            Parameters
            ----------
            alias : string
                The name for the dataset which is saved within the hdf5 file.
         
            path : string *optional*
                The path to the hdf5 file. If no path is given, the alias is 
                taken as filename in the current path.
            
            overwriteQ : Boolean *optional*
                Specifies whether a dataset may be overwritten if it is already
                present in the given hdf5 file or not.
        """
        self.distributor.save_data(self.data, alias, path, overwriteQ)

    def load(self, alias, path=None):
        """
            Loads a distributed_data_object from disk utilizing h5py.
            
            Parameters
            ----------
            alias : string
                The name of the dataset which is loaded from the hdf5 file.
 
            path : string *optional*
                The path to the hdf5 file. If no path is given, the alias is 
                taken as filename in the current path.
        """
        self.data = self.distributor.load_data(alias, path)
           
    def __sliceify__(self, inp):
        sliceified = []
        result = []
        if isinstance(inp, tuple):
            x = inp
Ultimanet's avatar
Ultimanet committed
743
744
        elif isinstance(inp, list):
            x = tuple(inp)
ultimanet's avatar
ultimanet committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
        else:
            x = (inp, )
        
        for i in range(len(x)):
            if isinstance(x[i], slice):
                result += [x[i], ]
                sliceified += [False, ]
            else:
                result += [slice(x[i], x[i]+1), ]
                sliceified += [True, ]
    
        return (tuple(result), sliceified)
                
                
    def __enfold__(self, in_data, sliceified):
        data = np.array(in_data, copy=False)    
        temp_shape = ()
        j=0
        for i in sliceified:
            if i == True:
                temp_shape += (1,)
766
767
                if data.shape[j] == 1:
                    j +=1
ultimanet's avatar
ultimanet committed
768
            else:
769
770
771
772
                try:
                    temp_shape += (data.shape[j],)
                except(IndexError):
                    temp_shape += (1,)
ultimanet's avatar
ultimanet committed
773
774
775
776
777
778
                j += 1
        ## take into account that the sliceified tuple may be too short, because 
        ## of a non-exaustive list of slices
        for i in range(len(data.shape)-j):
            temp_shape += (data.shape[j],)
            j += 1
Ultimanet's avatar
Ultimanet committed
779
        
ultimanet's avatar
ultimanet committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
        return data.reshape(temp_shape)
    
    def __defold__(self, data, sliceified):
        temp_slice = ()
        for i in sliceified:
            if i == True:
                temp_slice += (0,)
            else:
                temp_slice += (slice(None),)
        return data[temp_slice]

    

   
class _fftw_distributor(object):
795
796
    def __init__(self, global_data=None, global_shape=None, dtype=None, 
                 comm=MPI.COMM_WORLD, alias=None, path=None):
ultimanet's avatar
ultimanet committed
797
798
799
800
801
802
803
804
805
806
807
        
        if alias != None:
            file_path = path if path != None else alias 
            if found['h5py_parallel']:
                f = h5py.File(file_path, 'r', driver='mpio', comm=comm)
            else:
                f= h5py.File(file_path, 'r')        
            dset = f[alias]        

        
        if comm.rank == 0:        
Ultimanet's avatar
Ultimanet committed
808
            ## Case 1: hdf5 path supplied
ultimanet's avatar
ultimanet committed
809
810
            if alias != None:
                self.global_shape = dset.shape
Ultimanet's avatar
Ultimanet committed
811
812
813
814
            ## Case 2: no hdf5 path supplied
            else:           
                ## subcase 1: input data is scalar or None
                if global_data == None or np.isscalar(global_data):
ultimanet's avatar
ultimanet committed
815
                    if global_shape == None:
Ultimanet's avatar
Ultimanet committed
816
                        raise TypeError(about._errors.\
Ultimanet's avatar
Ultimanet committed
817
                cstring("ERROR: Neither non-scalar data nor shape supplied!"))
ultimanet's avatar
ultimanet committed
818
819
                    else:
                        self.global_shape = global_shape
Ultimanet's avatar
Ultimanet committed
820
821
                ## subcase 2: input data is non-scalar 
                ## -> Take the shape of the input data
ultimanet's avatar
ultimanet committed
822
823
824
825
                else:
                    self.global_shape = global_data.shape
        else:
            self.global_shape = None
Ultimanet's avatar
Ultimanet committed
826
            
ultimanet's avatar
ultimanet committed
827
828
829
830
831
832
833
834
835
836
837
838
        self.global_shape = comm.bcast(self.global_shape, root = 0)
        self.global_shape = tuple(self.global_shape)
        
        if comm.rank == 0:        
            if alias != None:
                self.dtype = dset.dtype.type
            else:    
                if dtype != None:        
                    self.dtype = dtype
                elif global_data != None:
                    self.dtype = np.array(global_data).dtype.type
                else:
Ultimanet's avatar
Ultimanet committed
839
                    raise TypeError(about._errors.\
840
841
                    cstring("ERROR: Failed setting datatype. Neither data, "+\
                     "nor datatype supplied."))
ultimanet's avatar
ultimanet committed
842
843
844
845
846
847
848
849
850
        else:
            self.dtype=None
        self.dtype = comm.bcast(self.dtype, root=0)
        if alias != None:        
            f.close()        
        
        self._my_dtype_converter = dtype_converter()
        
        if not self._my_dtype_converter.known_np_Q(self.dtype):
Ultimanet's avatar
Ultimanet committed
851
            raise TypeError(about._errors.cstring(\
852
            "ERROR: The datatype "+str(self.dtype)+" is not known to mpi4py."))
ultimanet's avatar
ultimanet committed
853
854
855
856
857
858
859
860
861
862

        self.mpi_dtype  = self._my_dtype_converter.to_mpi(self.dtype)
        
        self._local_size = pyfftw.local_size(self.global_shape)
        self.local_start = self._local_size[2]
        self.local_end = self.local_start + self._local_size[1]
        self.local_length = self.local_end-self.local_start        
        self.local_shape = (self.local_length,) + tuple(self.global_shape[1:])
        self.local_dim = np.product(self.local_shape)
        self.local_dim_list = np.empty(comm.size, dtype=np.int)
863
864
        comm.Allgather([np.array(self.local_dim,dtype=np.int), MPI.INT],\
            [self.local_dim_list, MPI.INT])
ultimanet's avatar
ultimanet committed
865
866
        self.local_dim_offset = np.sum(self.local_dim_list[0:comm.rank])
        
867
868
869
        self.local_slice = np.array([self.local_start, self.local_end,\
            self.local_length, self.local_dim, self.local_dim_offset],\
            dtype=np.int)
ultimanet's avatar
ultimanet committed
870
871
872
        ## collect all local_slices 
        ## [start, stop, length=stop-start, dimension, dimension_offset]
        self.all_local_slices = np.empty((comm.size,5),dtype=np.int)
873
874
        comm.Allgather([np.array((self.local_slice,),dtype=np.int), MPI.INT],\
            [self.all_local_slices, MPI.INT])
ultimanet's avatar
ultimanet committed
875
        
876
        self.comm = comm
ultimanet's avatar
ultimanet committed
877
        
878
879
880
881
882
883
    def globalize_flat_index(self, index):
        return int(index)+self.local_dim_offset
        
    def globalize_index(self, index):
        index = np.array(index, dtype=np.int).flatten()
        if index.shape != (len(self.global_shape),):
Ultimanet's avatar
Ultimanet committed
884
            raise TypeError(about._errors.cstring("ERROR: Length\
885
886
887
888
889
890
891
892
893
                of index tuple does not match the array's shape!"))                 
        globalized_index = index
        globalized_index[0] = index[0] + self.local_start
        ## ensure that the globalized index list is within the bounds
        global_index_memory = globalized_index
        globalized_index = np.clip(globalized_index, 
                                   -np.array(self.global_shape),
                                    np.array(self.global_shape)-1)
        if np.any(global_index_memory != globalized_index):
Ultimanet's avatar
Ultimanet committed
894
            about.warnings.cprint("WARNING: Indices were clipped!")
895
896
897
898
899
900
901
902
903
904
905
        globalized_index = tuple(globalized_index)
        return globalized_index
    
    def _allgather(self, thing, comm=None):
        if comm == None:
            comm = self.comm            
        gathered_things = comm.allgather(thing)
        return gathered_things
    
    def distribute_data(self, data=None, comm = None, alias=None,
                        path=None, **kwargs):
ultimanet's avatar
ultimanet committed
906
907
908
909
910
        '''
        distribute data checks 
        - whether the data is located on all nodes or only on node 0
        - that the shape of 'data' matches the global_shape
        '''
911
912
        if comm == None:
            comm = self.comm            
913
914
915
916
        rank = comm.Get_rank()
        size = comm.Get_size()        
        local_data_available_Q = np.array((int(data != None), ))
        data_available_Q = np.empty(size,dtype=int)
917
918
        comm.Allgather([local_data_available_Q, MPI.INT], 
                       [data_available_Q, MPI.INT])        
919
920
        
        if data_available_Q[0]==False and found['h5py']:
ultimanet's avatar
ultimanet committed
921
922
923
924
925
926
927
            try: 
                file_path = path if path != None else alias 
                if found['h5py_parallel']:
                    f = h5py.File(file_path, 'r', driver='mpio', comm=comm)
                else:
                    f= h5py.File(file_path, 'r')        
                dset = f[alias]
928
929
                if dset.shape == self.global_shape and \
                 dset.dtype.type == self.dtype:
ultimanet's avatar
ultimanet committed
930
931
932
933
                    temp_data = dset[self.local_start:self.local_end]
                    f.close()
                    return temp_data
                else:
Ultimanet's avatar
Ultimanet committed
934
                    raise TypeError(about._errors.cstring("ERROR: \
935
                    Input data has the wrong shape or wrong dtype!"))                 
ultimanet's avatar
ultimanet committed
936
937
938
            except(IOError, AttributeError):
                pass
            
939
        if np.all(data_available_Q==False):
Ultimanet's avatar
Ultimanet committed
940
            return np.empty(self.local_shape, dtype=self.dtype, order='C')
ultimanet's avatar
ultimanet committed
941
        ## if all nodes got data, we assume that it is the right data and 
942
943
        ## store it individually. If not, take the data on node 0 and scatter 
        ## it...
ultimanet's avatar
ultimanet committed
944
        if np.all(data_available_Q):
945
946
            return data[self.local_start:self.local_end].astype(self.dtype,\
                copy=False)    
947
948
        ## ... but only if node 0 has actually data!
        elif data_available_Q[0] == False:# or np.all(data_available_Q==False):
Ultimanet's avatar
Ultimanet committed
949
            return np.empty(self.local_shape, dtype=self.dtype, order='C')
950
        
ultimanet's avatar
ultimanet committed
951
952
953
954
955
        else:
            if data == None:
                data = np.empty(self.global_shape)            
            if rank == 0:
                if np.all(data.shape != self.global_shape):
Ultimanet's avatar
Ultimanet committed
956
                    raise TypeError(about._errors.cstring(\
957
                        "ERROR: Input data has the wrong shape!"))
ultimanet's avatar
ultimanet committed
958
            ## Scatter the data!            
Ultimanet's avatar
Ultimanet committed
959
            _scattered_data = np.empty(self.local_shape, dtype = self.dtype)
ultimanet's avatar
ultimanet committed
960
961
            _dim_list = self.all_local_slices[:,3]
            _dim_offset_list = self.all_local_slices[:,4]
962
963
            comm.Scatterv([data, _dim_list, _dim_offset_list, self.mpi_dtype],\
                [_scattered_data, self.mpi_dtype], root=0)
ultimanet's avatar
ultimanet committed
964
965
966
            return _scattered_data
        return None
    
Ultimanet's avatar
Ultimanet committed
967
968
    def _disperse_data_primitive(self, data, to_slices, data_update, 
                                 from_slices, source_rank='all', comm=None):
969
970
        if comm == None:
            comm = self.comm            
971
972
        ## compute the part of the slice which is relevant for the 
        ## individual node      
ultimanet's avatar
ultimanet committed
973
        localized_start, localized_stop = self._backshift_and_decycle(
Ultimanet's avatar
Ultimanet committed
974
            to_slices[0], self.local_start, self.local_end,\
975
976
                self.global_shape[0])
        local_slice = (slice(localized_start, localized_stop,\
Ultimanet's avatar
Ultimanet committed
977
                        to_slices[0].step),) + to_slices[1:]
ultimanet's avatar
ultimanet committed
978
979
980
981
982
        
        ## compute the parameter sets and list for the data splitting
        local_slice_shape = data[local_slice].shape        
        local_affected_data_length = local_slice_shape[0]
        local_affected_data_length_list=np.empty(comm.size, dtype=np.int)        
983
984
985
986
987
        comm.Allgather(\
            [np.array(local_affected_data_length, dtype=np.int), MPI.INT],\
            [local_affected_data_length_list, MPI.INT])        
        local_affected_data_length_offset_list = np.append([0],\
                            np.cumsum(local_affected_data_length_list)[:-1])
ultimanet's avatar
ultimanet committed
988
989
990
991
992
993
994
995
        
        
        if source_rank == 'all':
            ## only take the relevant part out of data_update and plug it into 
            ## data[local_slice]
            r = comm.rank
            o = local_affected_data_length_offset_list
            l = local_affected_data_length
Ultimanet's avatar
Ultimanet committed
996
997
998
999
1000
1001
            
            ## if the from_slices object is not None, i.e. only a part from
            ## the data source is used, form the update_slice accordingly
            if from_slices == None:
                update_slice = (slice(o[r], o[r]+l),)
            else:
Ultimanet's avatar
Ultimanet committed
1002
                    
Ultimanet's avatar
Ultimanet committed
1003
1004
1005
                f_step = from_slices[0].step
                if f_step == None:
                    f_step = 1
Ultimanet's avatar
Ultimanet committed
1006
                    
Ultimanet's avatar
Ultimanet committed
1007
                f_direction = np.sign(f_step)
Ultimanet's avatar
Ultimanet committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

                f_relative_start = from_slices[0].start
                if f_relative_start != None:
                    f_start = f_relative_start + f_direction*o[r]
                else:
                    f_start = None
                    f_relative_start = 0
                    
                f_stop = f_relative_start + f_direction*(o[r]+l*np.abs(f_step))
                if f_stop < 0:
                    f_stop = None


Ultimanet's avatar
Ultimanet committed
1021
                ## combine the slicing for the first dimension 
Ultimanet's avatar
Ultimanet committed
1022
1023
                update_slice = (slice(f_start,
                                      f_stop,
Ultimanet's avatar
Ultimanet committed
1024
1025
1026
1027
                                      f_step),
                                )
                ## add the rest of the from_slicing
                update_slice += from_slices[1:]
Ultimanet's avatar
Ultimanet committed
1028

1029
1030
            data[local_slice] = np.array(data_update[update_slice],\
                                    copy=False).astype(self.dtype)
ultimanet's avatar
ultimanet committed
1031
1032
1033
1034
            
        else:
            ## Scatterv the relevant part from the source_rank to the others 
            ## and plug it into data[local_slice]
1035
1036
1037
            
            ## if the first slice object has a negative step size, the ordering 
            ## of the Scatterv function must be reversed         
Ultimanet's avatar
Ultimanet committed
1038
            order = to_slices[0].step
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
            if order == None:
                order = 1
            else:
                order = np.sign(order)

            local_affected_data_dim_list = \
                np.array(local_affected_data_length_list) *\
                    np.product(local_slice_shape[1:])                    

            local_affected_data_dim_offset_list = np.append([0],\
                np.cumsum(local_affected_data_dim_list[::order])[:-1])[::order]
                
            local_dispersed_data = np.zeros(local_slice_shape,\
                dtype=self.dtype)
            comm.Scatterv(\
Ultimanet's avatar
Ultimanet committed
1054
1055
                [np.array(data_update[from_slices],copy=False).\
                                                        astype(self.dtype),\
1056
1057
                    local_affected_data_dim_list,\
                    local_affected_data_dim_offset_list, self.mpi_dtype],
ultimanet's avatar
ultimanet committed
1058
1059
1060
1061
1062
1063
1064
                          [local_dispersed_data, self.mpi_dtype], 
                          root=source_rank)                            
            data[local_slice] = local_dispersed_data
        return None
        
    
    
Ultimanet's avatar
Ultimanet committed
1065
1066
    def disperse_data(self, data, to_slices, data_update, from_slices=None,
                      comm=None, **kwargs):
1067
1068
        if comm == None:
            comm = self.comm            
Ultimanet's avatar
Ultimanet committed
1069
        to_slices_list = comm.allgather(to_slices)
ultimanet's avatar
ultimanet committed
1070
        ## check if all slices are the same. 
Ultimanet's avatar
Ultimanet committed
1071
        if all(x == to_slices_list[0] for x in to_slices_list):
ultimanet's avatar
ultimanet committed
1072
1073
            ## in this case, the _disperse_data_primitive can simply be called 
            ##with target_rank = 'all'
Ultimanet's avatar
Ultimanet committed
1074
1075
1076
1077
1078
1079
            self._disperse_data_primitive(data = data, 
                                          to_slices = to_slices,
                                          data_update=data_update,
                                          from_slices=from_slices, 
                                          source_rank='all', 
                                          comm=comm)
1080
1081
        ## if the different nodes got different slices, disperse the data 
        ## individually
ultimanet's avatar
ultimanet committed
1082
1083
        else:
            i = 0        
Ultimanet's avatar
Ultimanet committed
1084
            for temp_to_slices in to_slices_list:
ultimanet's avatar
ultimanet committed
1085
                ## make the collect_data call on all nodes            
Ultimanet's avatar
Ultimanet committed
1086
1087
1088
1089
1090
1091
                self._disperse_data_primitive(data=data,
                                              to_slices=temp_to_slices,
                                              data_update=data_update,
                                              from_slices=from_slices,
                                              source_rank=i, 
                                              comm=comm)
ultimanet's avatar
ultimanet committed
1092
1093
1094
                i += 1
                 
        
1095
1096
1097
1098
    def _collect_data_primitive(self, data, slice_objects, target_rank='all', comm=None):
        if comm == None:
            comm = self.comm            
            
ultimanet's avatar
ultimanet committed
1099
        localized_start, localized_stop = self._backshift_and_decycle(
1100
            slice_objects[0], self.local_start, self.local_end, self.global_shape[0])
ultimanet's avatar
ultimanet committed
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
        local_slice = (slice(localized_start,localized_stop,slice_objects[0].step),)+slice_objects[1:]
        local_collected_data = np.ascontiguousarray(data[local_slice])

        local_collected_data_length = local_collected_data.shape[0]
        local_collected_data_length_list=np.empty(comm.size, dtype=np.int)        
        comm.Allgather([np.array(local_collected_data_length, dtype=np.int), MPI.INT], [local_collected_data_length_list, MPI.INT])        
             
        collected_data_length = np.sum(local_collected_data_length_list) 
        collected_data_shape = (collected_data_length,)+local_collected_data.shape[1:]
        local_collected_data_dim_list= np.array(local_collected_data_length_list) * np.product(local_collected_data.shape[1:])        
        
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
        ## if the first slice object has a negative step size, the ordering 
        ## of the Gatherv functions must be reversed         
        order = slice_objects[0].step
        if order == None:
            order = 1
        else:
            order = np.sign(order)
            
        local_collected_data_dim_offset_list = np.append([0],np.cumsum(local_collected_data_dim_list[::order])[:-1])[::order]

        local_collected_data_dim_offset_list = local_collected_data_dim_offset_list
ultimanet's avatar
ultimanet committed
1123
        collected_data = np.empty(collected_data_shape, dtype=self.dtype)
1124
        
ultimanet's avatar
ultimanet committed
1125
1126
1127
1128
1129
1130
1131
1132
1133

        if target_rank == 'all':
            comm.Allgatherv([local_collected_data, self.mpi_dtype], 
                         [collected_data, local_collected_data_dim_list, local_collected_data_dim_offset_list, self.mpi_dtype])                
        else:
            comm.Gatherv([local_collected_data, self.mpi_dtype], 
                         [collected_data, local_collected_data_dim_list, local_collected_data_dim_offset_list, self.mpi_dtype], root=target_rank)                            
        return collected_data

1134
1135
1136
    def collect_data(self, data, slice_objects, comm=None, **kwargs):
        if comm == None:
            comm = self.comm                    
ultimanet's avatar
ultimanet committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
        slice_objects_list = comm.allgather(slice_objects)
        ## check if all slices are the same. 
        if all(x == slice_objects_list[0] for x in slice_objects_list):
            ## in this case, the _collect_data_primitive can simply be called 
            ##with target_rank = 'all'
            return self._collect_data_primitive(data=data, slice_objects=slice_objects, target_rank='all', comm=comm)
        
        ## if the different nodes got different slices, collect the data individually
        i = 0        
        for temp_slices in slice_objects_list:
            ## make the collect_data call on all nodes            
            temp_data = self._collect_data_primitive(data=data, slice_objects=temp_slices, target_rank=i, comm=comm)
            ## save the result only on the pulling node            
            if comm.rank == i:
                individual_data = temp_data
            i += 1
        return individual_data
        
    
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
    def _backshift_and_decycle(self, slice_object, shifted_start, shifted_stop, global_length):
        ## Crop the start value
        if slice_object.start > global_length-1:
            slice_object = slice(global_length-1, slice_object.stop,
                                 slice_object.step)
                                 
        ## Reformulate negative indices                                  
        if slice_object.start < 0 and slice_object.start != None:
            temp_start = slice_object.start + global_length
            if temp_start < 0:
Ultimanet's avatar
Ultimanet committed
1166
                raise ValueError(about._errors.cstring(\
1167
1168
1169
1170
1171
1172
1173
                "ERROR: Index is out of bounds!"))
            slice_object = slice(temp_start, slice_object.stop,\
            slice_object.step) 

        if slice_object.stop < 0 and slice_object.stop != None:
            temp_stop = slice_object.stop + global_length
            if temp_stop < 0:
Ultimanet's avatar
Ultimanet committed
1174
                raise ValueError(about._errors.cstring(\
1175
1176
1177
1178
1179
                "ERROR: Index is out of bounds!"))
            slice_object = slice(slice_object.start, temp_stop,\
            slice_object.step) 
                
        ## initialize the step
ultimanet's avatar
ultimanet committed
1180
1181
1182
1183
        if slice_object.step == None:
            step = 1
        else:
            step = slice_object.step
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
        
        if step > 0:
            shift = shifted_start
            ## calculate the start index
            if slice_object.start == None:
                local_start = (-shift)%step ## step size compensation
            else:
                local_start = slice_object.start - shift
                ## if the local_start is negative, pull it up to zero
                local_start = local_start%step if local_start < 0 else local_start
            ## calculate the stop index
            if slice_object.stop == None:
                local_stop = None
            else:
                local_stop = slice_object.stop - shift
                ## if local_stop is negative, pull it up to zero
                local_stop = 0 if local_stop < 0 else local_stop
                
        else: # if step < 0
            step = -step
            local_length = shifted_stop - shifted_start
            ## calculate the start index. (Here, local_start > local_stop!)
            if slice_object.start == None:
                local_start = (local_length-1) -\
                    (global_length-shifted_stop)%step #stepsize compensation
            else:
                local_start = slice_object.start - shifted_start
                ## if the local_start is negative, pull it up to zero
                local_start = 0 if local_start < 0 else local_start                
                ## if the local_start is greater than the local length, pull
                ## it down 
                if local_start > local_length-1:
                    overhead = local_start - (local_length-1)
                    overhead = overhead - overhead%(-step)
                    local_start = local_start - overhead
            ## calculate the stop index
            if slice_object.stop == None:
                local_stop = None
            else:
                local_stop = slice_object.stop - shifted_start
                ## if local_stop is negative, pull it up to zero
                local_stop = 0 if local_stop < 0 else local_stop    
1226
        ## Note: if start or stop are greater than the array length,
ultimanet's avatar
ultimanet committed
1227
1228
1229
        ## numpy will automatically cut the index value down into the 
        ## array's range 
        return local_start, local_stop        
1230
    
Ultimanet's avatar
Ultimanet committed
1231
1232
    def inject(self, data, to_slices, data_update, from_slices, comm=None, 
               **kwargs):
Ultimanet's avatar
Ultimanet committed
1233
        ## check if to_key and from_key are completely built of slices 
Ultimanet's avatar
Ultimanet committed
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
        if not np.all(
            np.vectorize(lambda x: isinstance(x, slice))(to_slices)):
            raise ValueError(about._errors.cstring(
            "ERROR: The to_slices argument must be a list or tuple of slices!")
            )

        if not np.all(
            np.vectorize(lambda x: isinstance(x, slice))(from_slices)):
            raise ValueError(about._errors.cstring(
            "ERROR: The from_slices argument must be a list or tuple of slices!")
            )
            
        to_slices = tuple(to_slices)
        from_slices = tuple(from_slices)
        self.disperse_data(data = data, 
                           to_slices = to_slices,
                           data_update = data_update,
                           from_slices = from_slices,
                           comm=comm,
                           **kwargs)
Ultimanet's avatar
Ultimanet committed
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348

    def extract_local_data(self, data_object):
        ## if data_object is not a ndarray or a d2o, cast it to a ndarray
        if not (isinstance(data_object, np.ndarray) or 
                isinstance(data_object, distributed_data_object)):
            data_object = np.array(data_object)
        ## check if the shapes are remotely compatible, reshape if possible
        ## and determine which dimensions match only via broadcasting
        try:
            (data_object, matching_dimensions) = \
                self._reshape_foreign_data(data_object)
        ## if the shape-casting fails, try to fix things via locall data
        ## matching
        except(ValueError):
            ## Check if all the local shapes match the supplied data
            local_matchQ = (self.local_shape == data_object.shape)
            global_matchQ = self._allgather(local_matchQ)            
            ## if the local shapes match, simply return the data_object            
            if np.all(global_matchQ):
                extracted_data = data_object[:] 
            ## if not, allgather the local data pieces and extract from this
            else:
                allgathered_data = self._allgather(data_object)
                allgathered_data = np.concatenate(allgathered_data)
                if allgathered_data.shape != self.global_shape:
                    raise ValueError(
                            about._errors.cstring(
            "ERROR: supplied shapes do neither match globally nor locally"))
                return self.extract_local_data(allgathered_data)
            
        ## if shape-casting was successfull, extract the data
        else:
            ## If the first dimension matches only via broadcasting...
            ## Case 1: ...do broadcasting. This procedure does not depend on the
            ## array type (ndarray or d2o)
            if matching_dimensions[0] == False:
                extracted_data = data_object[0:1]
    
    
            ## Case 2: First dimension fits directly and data_object is a d2o
            elif isinstance(data_object, distributed_data_object):
                ## Check if the distribution_strategy and the comm match 
                ## the own ones.            
                if type(self) == type(data_object.distributor) and\
                    self.comm == data_object.distributor.comm:
                    ## Case 1: yes. Simply take the local data
                    extracted_data = data_object.data
                else:            
                    ## Case 2: no. All nodes extract their local slice from the 
                    ## data_object
                    extracted_data =\
                        data_object[self.local_start:self.local_end]
            
            ## Case 3: First dimension fits directly and data_object is an generic
            ## array        
            else:
                extracted_data =\
                    data_object[self.local_start:self.local_end]
            
        return extracted_data

    def _reshape_foreign_data(self, foreign):
        ## Case 1:        
        ## check if the shapes match directly 
        if self.global_shape == foreign.shape:
            matching_dimensions = [True,]*len(self.global_shape)            
            return (foreign, matching_dimensions)
        ## Case 2:
        ## if not, try to reshape the input data
        ## in particular, this will fail when foreign is a d2o as long as 
        ## reshaping is not implemented
        try:
            output = foreign.reshape(self.global_shape)
            matching_dimensions = [True,]*len(self.global_shape)
            return (output, matching_dimensions)
        except(ValueError, AttributeError):
            pass
        ## Case 3:
        ## if this does not work, try to broadcast the shape
        ## check if the dimensions match
        if len(self.global_shape) != len(foreign.shape):
           raise ValueError(
               about._errors.cstring("ERROR: unequal number of dimensions!")) 
        ## check direct matches
        direct_match = (np.array(self.global_shape) == np.array(foreign.shape))
        ## check broadcast compatibility
        broadcast_match = (np.ones(len(self.global_shape), dtype=int) ==\
                            np.array(foreign.shape))
        ## combine the matches and assert that all are true
        combined_match = (direct_match | broadcast_match)
        if not np.all(combined_match):
            raise ValueError(
                about._errors.cstring("ERROR: incompatible shapes!")) 
        matching_dimensions = tuple(direct_match)
        return (foreign, matching_dimensions)
Ultimanet's avatar
Ultimanet committed
1349
        
Ultimanet's avatar
Ultimanet committed
1350
                
1351
1352
1353
    def consolidate_data(self, data, target_rank='all', comm = None):
        if comm == None:
            comm = self.comm            
ultimanet's avatar
ultimanet committed
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
        _gathered_data = np.empty(self.global_shape, dtype=self.dtype)
        _dim_list = self.all_local_slices[:,3]
        _dim_offset_list = self.all_local_slices[:,4]
        if target_rank == 'all':
            comm.Allgatherv([data, self.mpi_dtype], 
                         [_gathered_data, _dim_list, _dim_offset_list, self.mpi_dtype])                
        else:
            comm.Gatherv([data, self.mpi_dtype], 
                         [_gathered_data, _dim_list, _dim_offset_list, self.mpi_dtype],
                         root=target_rank)
        return _gathered_data
    
    if found['h5py']:
1367
1368
1369
        def save_data(self, data, alias, path=None, overwriteQ=True, comm=None):
            if comm == None:
                comm = self.comm            
ultimanet's avatar
ultimanet committed
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
            ## if no path and therefore no filename was given, use the alias as filename        
            use_path = alias if path==None else path
            
            ## create the file-handle
            if found['h5py_parallel']:
                f = h5py.File(use_path, 'a', driver='mpio', comm=comm)
            else:
                f= h5py.File(use_path, 'a')
            ## check if dataset with name == alias already exists
            try: 
                f[alias]
                if overwriteQ == False: #if yes, and overwriteQ is set to False, raise an Error
Ultimanet's avatar
Ultimanet committed
1382
                    raise KeyError(about._errors.cstring("ERROR: overwriteQ == False, but alias already in use!"))
ultimanet's avatar
ultimanet committed
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
                else: # if yes, remove the existing dataset
                    del f[alias]
            except(KeyError):
                pass
            
            ## create dataset
            dset = f.create_dataset(alias, shape=self.global_shape, dtype=self.dtype)
            ## write the data
            dset[self.local_start:self.local_end] = data
            ## close the file
            f.close()
        
1395
1396
1397
        def load_data(self, alias, path, comm=None):
            if comm == None:
                comm = self.comm            
ultimanet's avatar
ultimanet committed
1398
1399
1400
1401
1402
1403
1404
1405
            ## create the file-handle
            if found['h5py_parallel']:
                f = h5py.File(path, 'r', driver='mpio', comm=comm)
            else:
                f= h5py.File(path, 'r')        
            dset = f[alias]        
            ## check shape
            if dset.shape != self.global_shape:
Ultimanet's avatar
Ultimanet committed
1406
                raise TypeError(about._errors.cstring("ERROR: The shape of the given dataset does not match the distributed_data_object."))
ultimanet's avatar
ultimanet committed
1407
1408
            ## check dtype
            if dset.dtype.type != self.dtype:
Ultimanet's avatar
Ultimanet committed
1409
                raise TypeError(about._errors.cstring("ERROR: The datatype of the given dataset does not match the distributed_data_object."))
ultimanet's avatar
ultimanet committed
1410
1411
1412
1413
1414
1415
1416
            ## if everything seems to fit, load the data
            data = dset[self.local_start:self.local_end]
            ## close the file
            f.close()
            return data
    else:
        def save_data(self, *args, **kwargs):
Ultimanet's avatar
Ultimanet committed
1417
            raise ImportError(about._errors.cstring("ERROR: h5py was not imported")) 
ultimanet's avatar
ultimanet committed
1418
        def load_data(self, *args, **kwargs):
Ultimanet's avatar
Ultimanet committed
1419
            raise ImportError(about._errors.cstring("ERROR: h5py was not imported")) 
ultimanet's avatar
ultimanet committed
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
        
        
        
        

class _not_distributor(object):
    def __init__(self, global_data=None, global_shape=None, dtype=None, *args,  **kwargs):
        if dtype != None:        
            self.dtype = dtype
        elif global_data != None:
            self.dtype = np.array(global_data).dtype.type
            
1432
        if global_data != None and np.array(global_data).shape != ():
ultimanet's avatar
ultimanet committed
1433
1434
1435
1436
            self.global_shape = np.array(global_data).shape
        elif global_shape != None:
            self.global_shape = global_shape
        else:
Ultimanet's avatar
Ultimanet committed
1437
            raise TypeError(about._errors.cstring("ERROR: Neither data nor shape supplied!")) 
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
    
    def globalize_flat_index(self, index):
        return index
    
    def globalize_index(self, index):
        return index
    
    def _allgather(self, thing):
        return [thing,]
        
ultimanet's avatar
ultimanet committed
1448
    def distribute_data(self, data, **kwargs):
Ultimanet's avatar
Ultimanet committed
1449
1450
1451
1452
1453
        if data == None:        
            return np.zeros(self.global_shape, dtype=self.dtype)
        else:
            return np.array(data).astype(self.dtype, copy=False).\
                    reshape(self.global_shape)
ultimanet's avatar
ultimanet committed
1454
    
1455
    def disperse_data(self, data, data_update, key, **kwargs):
ultimanet's avatar
ultimanet committed
1456
1457
        data[key] = np.array(data_update, copy=False).astype(self.dtype)