field.py 31.5 KB
Newer Older
csongor's avatar
csongor committed
1 2 3
from __future__ import division
import numpy as np

4
from d2o import distributed_data_object,\
5
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
6

7
from nifty.config import about,\
8
                         nifty_configuration as gc
csongor's avatar
csongor committed
9

10
from nifty.field_types import FieldType
11

12
from nifty.spaces.space import Space
13
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
14

csongor's avatar
csongor committed
15
import nifty.nifty_utilities as utilities
16 17
from nifty.random import Random

csongor's avatar
csongor committed
18

19
class Field(object):
theos's avatar
theos committed
20
    # ---Initialization methods---
21

theos's avatar
theos committed
22
    def __init__(self, domain=None, val=None, dtype=None, field_type=None,
23
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
24

25
        self.domain = self._parse_domain(domain=domain, val=val)
26
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
27

28
        self.field_type = self._parse_field_type(field_type, val=val)
29

theos's avatar
theos committed
30 31 32 33 34 35
        try:
            start = len(reduce(lambda x, y: x+y, self.domain_axes))
        except TypeError:
            start = 0
        self.field_type_axes = self._get_axes_tuple(self.field_type,
                                                    start=start)
36

theos's avatar
theos committed
37
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
38
                                       val=val,
theos's avatar
theos committed
39 40
                                       domain=self.domain,
                                       field_type=self.field_type)
41

42 43 44
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
45 46 47

        self.set_val(new_val=val, copy=copy)

48
    def _parse_domain(self, domain, val=None):
49
        if domain is None:
50 51 52 53
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
54
        elif isinstance(domain, Space):
55
            domain = (domain,)
56 57 58
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
59
        for d in domain:
60
            if not isinstance(d, Space):
csongor's avatar
csongor committed
61
                raise TypeError(about._errors.cstring(
62 63
                    "ERROR: Given domain contains something that is not a "
                    "nifty.space."))
csongor's avatar
csongor committed
64 65
        return domain

66
    def _parse_field_type(self, field_type, val=None):
67
        if field_type is None:
68 69 70 71
            if isinstance(val, Field):
                field_type = val.field_type
            else:
                field_type = ()
72
        elif isinstance(field_type, FieldType):
73
            field_type = (field_type,)
74 75
        elif not isinstance(field_type, tuple):
            field_type = tuple(field_type)
76
        for ft in field_type:
77
            if not isinstance(ft, FieldType):
78
                raise TypeError(about._errors.cstring(
79
                    "ERROR: Given object is not a nifty.FieldType."))
80 81
        return field_type

theos's avatar
theos committed
82 83 84 85 86 87 88 89 90 91
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
92

93
    def _infer_dtype(self, dtype, val, domain, field_type):
csongor's avatar
csongor committed
94
        if dtype is None:
95 96 97
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
theos's avatar
theos committed
98 99 100 101 102 103 104
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
csongor's avatar
csongor committed
105

theos's avatar
theos committed
106
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
107

theos's avatar
theos committed
108
        return dtype
109

110 111
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
112
            if isinstance(val, distributed_data_object):
113
                distribution_strategy = val.distribution_strategy
114
            elif isinstance(val, Field):
115
                distribution_strategy = val.distribution_strategy
116 117
            else:
                about.warnings.cprint("WARNING: Datamodel set to default!")
118
                distribution_strategy = gc['default_distribution_strategy']
119
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
120
            raise ValueError(about._errors.cstring(
121 122
                    "ERROR: distribution_strategy must be a global-type "
                    "strategy."))
123
        return distribution_strategy
124 125

    # ---Factory methods---
126

127 128
    @classmethod
    def from_random(cls, random_type, domain=None, dtype=None, field_type=None,
129
                    distribution_strategy=None, **kwargs):
130 131
        # create a initially empty field
        f = cls(domain=domain, dtype=dtype, field_type=field_type,
132
                distribution_strategy=distribution_strategy)
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

#        elif random_type == 'syn':
#            pass

csongor's avatar
csongor committed
171
        else:
172 173
            raise KeyError(about._errors.cstring(
                "ERROR: unsupported random key '" + str(random_type) + "'."))
csongor's avatar
csongor committed
174

175
        return random_arguments
csongor's avatar
csongor committed
176

177 178 179 180 181 182 183 184 185 186 187 188 189
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for analysis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

212 213 214 215 216 217
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

218 219 220 221
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

222 223 224 225 226
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

227 228
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
229
                                  distribution_strategy=distribution_strategy,
230 231
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
232

233
        # extract pindex and rho from power_domain
234 235
        pindex = power_domain.pindex
        rho = power_domain.rho
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

        result_field = self.copy_empty(domain=result_domain)
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
            raise ValueError("ERROR: pindex's distribution strategy must be "
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
                    "ERROR: A slicing distributor shall not be reshaped to "
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

313
    def power_synthesize(self, spaces=None, real_signal=True):
314
        # assert that all spaces in `self.domain` are either of signal-type or
315 316
        # power_space instances
        for sp in self.domain:
317
            if not sp.harmonic and not isinstance(sp, PowerSpace):
318 319 320 321
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for synthesis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
            raise ValueError(about._errors.cstring(
                "ERROR: A PowerSpace is needed for field synthetization."))

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

358 359 360 361 362 363
        result_list = [self.__class__.from_random(
                             'normal',
                             result_domain,
                             dtype=harmonic_domain.dtype,
                             field_type=self.field_type,
                             distribution_strategy=self.distribution_strategy)
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
                                    axes=x.domain_axes[power_space_index])[0]
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
            about.warnings.cprint(
                "WARNING: The distribution_stragey of pindex does not fit the "
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
        local_spec = self.val.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
        local_rescaler = local_spec[local_blow_up]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
424

theos's avatar
theos committed
425
    # ---Properties---
426

theos's avatar
theos committed
427
    def set_val(self, new_val=None, copy=False):
428 429
        new_val = self.cast(new_val)
        if copy:
theos's avatar
theos committed
430 431 432
            new_val = new_val.copy()
        self._val = new_val
        return self._val
csongor's avatar
csongor committed
433

434 435
    def get_val(self, copy=False):
        if copy:
theos's avatar
theos committed
436
            return self._val.copy()
437
        else:
theos's avatar
theos committed
438
            return self._val
csongor's avatar
csongor committed
439

theos's avatar
theos committed
440 441 442
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
443

theos's avatar
theos committed
444 445 446
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
447

448 449
    @property
    def shape(self):
450 451 452 453 454 455 456
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
457

458
        return global_shape
csongor's avatar
csongor committed
459

460 461
    @property
    def dim(self):
theos's avatar
theos committed
462 463 464 465 466 467 468
        dim_tuple = ()
        dim_tuple += tuple(sp.dim for sp in self.domain)
        dim_tuple += tuple(ft.dim for ft in self.field_type)
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
469

470 471
    @property
    def dof(self):
theos's avatar
theos committed
472 473 474 475 476 477 478 479
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
480
        try:
theos's avatar
theos committed
481
            return reduce(lambda x, y: x * y, volume_tuple)
482
        except TypeError:
theos's avatar
theos committed
483
            return 0
484

theos's avatar
theos committed
485
    # ---Special unary/binary operations---
486

csongor's avatar
csongor committed
487 488 489
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
490 491
        else:
            dtype = np.dtype(dtype)
492

493 494 495 496 497 498 499 500 501
        for ind, sp in enumerate(self.domain):
            casted_x = sp.pre_cast(x,
                                   axes=self.domain_axes[ind])

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.pre_cast(casted_x,
                                   axes=self.field_type_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
502 503

        for ind, sp in enumerate(self.domain):
504 505
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
506 507

        for ind, ft in enumerate(self.field_type):
508 509
            casted_x = ft.post_cast(casted_x,
                                    axes=self.field_type_axes[ind])
510 511

        return casted_x
csongor's avatar
csongor committed
512

theos's avatar
theos committed
513
    def _actual_cast(self, x, dtype=None):
514
        if isinstance(x, Field):
csongor's avatar
csongor committed
515 516 517 518 519
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

520
        return_x = distributed_data_object(
521 522 523
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
524 525
        return_x.set_full_data(x, copy=False)
        return return_x
theos's avatar
theos committed
526 527

    def copy(self, domain=None, dtype=None, field_type=None,
528
             distribution_strategy=None):
theos's avatar
theos committed
529
        copied_val = self.get_val(copy=True)
530 531 532 533 534
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                field_type=field_type,
                                distribution_strategy=distribution_strategy)
theos's avatar
theos committed
535 536
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
537

theos's avatar
theos committed
538
    def copy_empty(self, domain=None, dtype=None, field_type=None,
539
                   distribution_strategy=None):
theos's avatar
theos committed
540 541
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
542
        else:
theos's avatar
theos committed
543
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
544

theos's avatar
theos committed
545 546 547 548
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
549

theos's avatar
theos committed
550 551 552 553
        if field_type is None:
            field_type = self.field_type
        else:
            field_type = self._parse_field_type(field_type)
csongor's avatar
csongor committed
554

555 556
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
557

theos's avatar
theos committed
558 559 560 561 562 563 564 565 566 567 568 569 570 571
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
            for i in xrange(len(self.field_type)):
                if self.field_type[i] is not field_type[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
572
                distribution_strategy == self.distribution_strategy):
theos's avatar
theos committed
573 574 575 576 577
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
                              field_type=field_type,
578
                              distribution_strategy=distribution_strategy)
theos's avatar
theos committed
579
        return new_field
csongor's avatar
csongor committed
580

theos's avatar
theos committed
581 582 583 584 585 586 587
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
588
            if key != '_val':
theos's avatar
theos committed
589 590 591 592 593 594
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
595
        if inplace:
csongor's avatar
csongor committed
596 597 598 599
            new_field = self
        else:
            new_field = self.copy_empty()

600
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
601

csongor's avatar
csongor committed
602
        if spaces is None:
theos's avatar
theos committed
603 604 605
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
606

607
        for ind, sp in enumerate(self.domain):
theos's avatar
theos committed
608 609 610 611 612
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
613 614

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
615 616
        return new_field

theos's avatar
theos committed
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
                for index in xrange(len(self.field_type)):
                    assert x.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

646
    def norm(self, q=2):
csongor's avatar
csongor committed
647 648 649 650 651 652 653 654 655 656 657 658 659 660
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
661
        if q == 2:
662
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
663
        else:
664
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

681
        new_val = self.get_val(copy=False)
theos's avatar
theos committed
682
        new_val = new_val.conjugate()
683
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
684 685 686

        return work_field

theos's avatar
theos committed
687
    # ---General unary/contraction methods---
688

theos's avatar
theos committed
689 690
    def __pos__(self):
        return self.copy()
691

theos's avatar
theos committed
692 693 694 695
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
696 697
        return return_field

theos's avatar
theos committed
698 699 700 701 702
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
703

theos's avatar
theos committed
704 705 706 707 708 709
    def _contraction_helper(self, op, spaces, types):
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
710

theos's avatar
theos committed
711 712 713 714
        if types is None:
            types = xrange(len(self.field_type))
        else:
            types = utilities.cast_axis_to_tuple(types, len(self.field_type))
715

theos's avatar
theos committed
716 717 718 719
        axes_list = ()
        axes_list += tuple(self.domain_axes[sp_index] for sp_index in spaces)
        axes_list += tuple(self.field_type_axes[ft_index] for
                           ft_index in types)
720
        try:
theos's avatar
theos committed
721
            axes_list = reduce(lambda x, y: x+y, axes_list)
722
        except TypeError:
theos's avatar
theos committed
723
            axes_list = ()
csongor's avatar
csongor committed
724

theos's avatar
theos committed
725 726 727
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
728

theos's avatar
theos committed
729 730 731
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
732
        else:
theos's avatar
theos committed
733 734 735 736 737 738 739 740 741 742 743
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
            return_field_type = tuple(self.field_type[i]
                                      for i in xrange(len(self.field_type))
                                      if i not in types)
            return_field = Field(domain=return_domain,
                                 val=data,
                                 field_type=return_field_type,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
744

theos's avatar
theos committed
745 746
    def sum(self, spaces=None, types=None):
        return self._contraction_helper('sum', spaces, types)
csongor's avatar
csongor committed
747

theos's avatar
theos committed
748 749
    def prod(self, spaces=None, types=None):
        return self._contraction_helper('prod', spaces, types)
csongor's avatar
csongor committed
750

theos's avatar
theos committed
751 752
    def all(self, spaces=None, types=None):
        return self._contraction_helper('all', spaces, types)
csongor's avatar
csongor committed
753

theos's avatar
theos committed
754 755
    def any(self, spaces=None, types=None):
        return self._contraction_helper('any', spaces, types)
csongor's avatar
csongor committed
756

theos's avatar
theos committed
757 758
    def min(self, spaces=None, types=None):
        return self._contraction_helper('min', spaces, types)
csongor's avatar
csongor committed
759

theos's avatar
theos committed
760 761
    def nanmin(self, spaces=None, types=None):
        return self._contraction_helper('nanmin', spaces, types)
csongor's avatar
csongor committed
762

theos's avatar
theos committed
763 764
    def max(self, spaces=None, types=None):
        return self._contraction_helper('max', spaces, types)
csongor's avatar
csongor committed
765

theos's avatar
theos committed
766 767
    def nanmax(self, spaces=None, types=None):
        return self._contraction_helper('nanmax', spaces, types)
csongor's avatar
csongor committed
768

theos's avatar
theos committed
769 770
    def mean(self, spaces=None, types=None):
        return self._contraction_helper('mean', spaces, types)
csongor's avatar
csongor committed
771

theos's avatar
theos committed
772 773
    def var(self, spaces=None, types=None):
        return self._contraction_helper('var', spaces, types)
csongor's avatar
csongor committed
774

theos's avatar
theos committed
775 776
    def std(self, spaces=None, types=None):
        return self._contraction_helper('std', spaces, types)
csongor's avatar
csongor committed
777

theos's avatar
theos committed
778
    # ---General binary methods---
csongor's avatar
csongor committed
779

theos's avatar
theos committed
780
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
781
        # if other is a field, make sure that the domains match
782
        if isinstance(other, Field):
theos's avatar
theos committed
783 784 785 786
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
787
                assert len(other.field_type) == len(self.field_type)
theos's avatar
theos committed
788 789 790 791 792 793
                for index in xrange(len(self.field_type)):
                    assert other.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
794

theos's avatar
theos committed
795 796
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
797 798 799 800 801 802

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

theos's avatar
theos committed
803
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
804 805 806
        return working_field

    def __add__(self, other):
theos's avatar
theos committed
807
        return self._binary_helper(other, op='__add__')
808

809
    def __radd__(self, other):
theos's avatar
theos committed
810
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
811 812

    def __iadd__(self, other):
theos's avatar
theos committed
813
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
814 815

    def __sub__(self, other):
theos's avatar
theos committed
816
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
817 818

    def __rsub__(self, other):
theos's avatar
theos committed
819
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
820 821

    def __isub__(self, other):
theos's avatar
theos committed
822
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
823 824

    def __mul__(self, other):
theos's avatar
theos committed
825
        return self._binary_helper(other, op='__mul__')
826

827
    def __rmul__(self, other):
theos's avatar
theos committed
828
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
829 830

    def __imul__(self, other):
theos's avatar
theos committed
831
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
832 833

    def __div__(self, other):
theos's avatar
theos committed
834
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
835 836

    def __rdiv__(self, other):
theos's avatar
theos committed
837
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
838 839

    def __idiv__(self, other):
theos's avatar
theos committed
840
        return self._binary_helper(other, op='__idiv__', inplace=True)
841

csongor's avatar
csongor committed
842
    def __pow__(self, other):
theos's avatar
theos committed
843
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
844 845

    def __rpow__(self, other):
theos's avatar
theos committed
846
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
847 848

    def __ipow__(self, other):
theos's avatar
theos committed
849
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
850 851

    def __lt__(self, other):
theos's avatar
theos committed
852
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
853 854

    def __le__(self, other):
theos's avatar
theos committed
855
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
856 857 858 859 860

    def __ne__(self, other):
        if other is None:
            return True
        else:
theos's avatar
theos committed
861
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
862 863 864 865 866

    def __eq__(self, other):
        if other is None:
            return False
        else:
theos's avatar
theos committed
867
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
868 869

    def __ge__(self, other):
theos's avatar
theos committed
870
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
871 872

    def __gt__(self, other):
theos's avatar
theos committed
873 874 875 876 877 878 879 880 881 882 883 884 885
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
886

887

888
class EmptyField(Field):
csongor's avatar
csongor committed
889 890
    def __init__(self):
        pass