rg_space.py 8.1 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18
19
20
21
22
23
24
25
26
27

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
28
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
29
30
31

"""
from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
32
from builtins import range
Martin Reinecke's avatar
Martin Reinecke committed
33
from functools import reduce
Marco Selig's avatar
Marco Selig committed
34
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
35
from ..space import Space
csongor's avatar
csongor committed
36

Marco Selig's avatar
Marco Selig committed
37

Theo Steininger's avatar
Theo Steininger committed
38
class RGSpace(Space):
Marco Selig's avatar
Marco Selig committed
39
40
41
42
43
44
45
46
47
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

Theo Steininger's avatar
Theo Steininger committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        Parameters
        ----------
        shape : {int, numpy.ndarray}
            Number of grid points or numbers of gridpoints along each axis.
        distances : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis
            (default: None).
            If distances==None:
                if harmonic==True, all distances will be set to 1
                if harmonic==False, the distance along each axis will be
                  set to the inverse of the number of points along that
                  axis.
        harmonic : bool, *optional*
        Whether the space represents a grid in position or harmonic space.
Theo Steininger's avatar
Theo Steininger committed
62
            (default: False).
Marco Selig's avatar
Marco Selig committed
63
64
65

        Attributes
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
66
        harmonic : bool
Theo Steininger's avatar
Theo Steininger committed
67
68
            Whether or not the grid represents a position or harmonic space.
        distances : tuple of floats
69
70
71
72
73
74
75
76
77
            Distance between two grid points along the correponding axis.
        dim : np.int
            Total number of dimensionality, i.e. the number of pixels.
        harmonic : bool
            Specifies whether the space is a signal or harmonic space.
        total_volume : np.float
            The total volume of the space.
        shape : tuple of np.ints
            The shape of the space's data array.
Theo Steininger's avatar
Theo Steininger committed
78

Marco Selig's avatar
Marco Selig committed
79
80
    """

81
82
    # ---Overwritten properties and methods---

Martin Reinecke's avatar
Martin Reinecke committed
83
    def __init__(self, shape, distances=None, harmonic=False):
Martin Reinecke's avatar
Martin Reinecke committed
84
        super(RGSpace, self).__init__()
85

Martin Reinecke's avatar
Martin Reinecke committed
86
        self._harmonic = bool(harmonic)
87
88
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
Martin Reinecke's avatar
Martin Reinecke committed
89
        self._wgt = float(reduce(lambda x, y: x*y, self._distances))
Martin Reinecke's avatar
Martin Reinecke committed
90
        self._dim = int(reduce(lambda x, y: x*y, self._shape))
Marco Selig's avatar
Marco Selig committed
91

92
    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
93
94
        return ("RGSpace(shape=%r, distances=%r, harmonic=%r)"
                % (self.shape, self.distances, self.harmonic))
95

96
97
98
99
100
101
102
103
104
105
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
Martin Reinecke's avatar
Martin Reinecke committed
106
        return self._dim
107
108
109

    @property
    def total_volume(self):
Martin Reinecke's avatar
Martin Reinecke committed
110
        return self.dim * self._wgt
111
112
113
114

    def copy(self):
        return self.__class__(shape=self.shape,
                              distances=self.distances,
Martin Reinecke's avatar
Martin Reinecke committed
115
                              harmonic=self.harmonic)
116

117
    def scalar_weight(self):
Martin Reinecke's avatar
Martin Reinecke committed
118
        return self._wgt
119

120
    def weight(self):
Martin Reinecke's avatar
Martin Reinecke committed
121
        return self._wgt
122

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
123
    def get_distance_array(self):
Theo Steininger's avatar
Theo Steininger committed
124
125
        """ Calculates an n-dimensional array with its entries being the
        lengths of the vectors from the zero point of the grid.
theos's avatar
theos committed
126

Theo Steininger's avatar
Theo Steininger committed
127
128
        Returns
        -------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
129
130
        numpy.ndarray
            An array containing the distances.
Theo Steininger's avatar
Theo Steininger committed
131

theos's avatar
theos committed
132
        """
Theo Steininger's avatar
Theo Steininger committed
133

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
134
135
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
136
137
138
139
140
141
142
143
144
145
146
        res = np.arange(self.shape[0], dtype=np.float64)
        res = np.minimum(res, self.shape[0]-res)*self.distances[0]
        if len(self.shape) == 1:
            return res
        res *= res
        for i in range(1, len(self.shape)):
            tmp = np.arange(self.shape[i], dtype=np.float64)
            tmp = np.minimum(tmp, self.shape[i]-tmp)*self.distances[i]
            tmp *= tmp
            res = np.add.outer(res, tmp)
        return np.sqrt(res)
theos's avatar
theos committed
147

Martin Reinecke's avatar
Martin Reinecke committed
148
    def get_unique_distances(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
149
150
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
Martin Reinecke's avatar
Martin Reinecke committed
168
            tmp = self.get_distance_array().unique()  # expensive!
Martin Reinecke's avatar
Martin Reinecke committed
169
170
171
172
173
174
175
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

176
    def get_fft_smoothing_kernel_function(self, sigma):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
177
178
        if (not self.harmonic):
            raise NotImplementedError
Theo Steininger's avatar
Theo Steininger committed
179
        return lambda x: np.exp(-2. * np.pi*np.pi * x*x * sigma*sigma)
theos's avatar
theos committed
180

Martin Reinecke's avatar
Martin Reinecke committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    def get_default_codomain(self):
        distances = 1. / (np.array(self.shape)*np.array(self.distances))
        return RGSpace(self.shape, distances, not self.harmonic)

    def check_codomain(self, codomain):
        if not isinstance(codomain, RGSpace):
            raise TypeError("domain is not a RGSpace")

        if self.shape != codomain.shape:
            raise AttributeError("The shapes of domain and codomain must be "
                                 "identical.")

        if self.harmonic == codomain.harmonic:
            raise AttributeError("domain.harmonic and codomain.harmonic must "
                                 "not be the same.")

        # Check if the distances match, i.e. dist' = 1 / (num * dist)
        if not np.all(
            np.absolute(np.array(self.shape) *
                        np.array(self.distances) *
                        np.array(codomain.distances) - 1) < 1e-7):
            raise AttributeError("The grid-distances of domain and codomain "
                                 "do not match.")

205
206
207
208
    # ---Added properties and methods---

    @property
    def distances(self):
Theo Steininger's avatar
Theo Steininger committed
209
210
211
        """Distance between two grid points along each axis. It is a tuple
        of positive floating point numbers with the n-th entry giving the
        distances of grid points along the n-th dimension.
212
        """
Theo Steininger's avatar
Theo Steininger committed
213

214
215
216
217
218
219
220
221
222
223
224
225
        return self._distances

    def _parse_shape(self, shape):
        if np.isscalar(shape):
            shape = (shape,)
        temp = np.empty(len(shape), dtype=np.int)
        temp[:] = shape
        return tuple(temp)

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
226
                temp = np.ones_like(self.shape, dtype=np.float64)
227
            else:
Martin Reinecke's avatar
Martin Reinecke committed
228
                temp = 1 / np.array(self.shape, dtype=np.float64)
229
        else:
Martin Reinecke's avatar
Martin Reinecke committed
230
            temp = np.empty(len(self.shape), dtype=np.float64)
231
232
            temp[:] = distances
        return tuple(temp)