energy_operators.py 5.45 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import absolute_import, division, print_function

from ..compat import *
from ..domain_tuple import DomainTuple
from .operator import Operator
from .sandwich_operator import SandwichOperator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
25
from .sampling_enabler import SamplingEnabler
Martin Reinecke's avatar
Martin Reinecke committed
26
27
28
from ..sugar import makeOp
from ..linearization import Linearization
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
29
30
from ..field import Field
from .simple_linear_operators import VdotOperator
Martin Reinecke's avatar
Martin Reinecke committed
31
32
33
34
35
36
37
38
39
40
41


class EnergyOperator(Operator):
    _target = DomainTuple.scalar_domain()


class SquaredNormOperator(EnergyOperator):
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
42
43
44
45
        if isinstance(x, Linearization):
            val = Field(self._target, x.val.vdot(x.val))
            jac = VdotOperator(2*x.val)(x.jac)
            return Linearization(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
46
47
48
49
50
51
52
53
54
        return Field(self._target, x.vdot(x))


class QuadraticFormOperator(EnergyOperator):
    def __init__(self, op):
        from .endomorphic_operator import EndomorphicOperator
        if not isinstance(op, EndomorphicOperator):
            raise TypeError("op must be an EndomorphicOperator")
        self._op = op
Martin Reinecke's avatar
Martin Reinecke committed
55
        self._domain = op.domain
Martin Reinecke's avatar
Martin Reinecke committed
56
57
58

    def apply(self, x):
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
59
60
61
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
            val = Field(self._target, 0.5*x.val.vdot(t1))
Martin Reinecke's avatar
Martin Reinecke committed
62
            return Linearization(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
63
        return Field(self._target, 0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77


class GaussianEnergy(EnergyOperator):
    def __init__(self, mean=None, covariance=None, domain=None):
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
        if covariance is not None:
            self._checkEquivalence(covariance.domain)
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Martin Reinecke's avatar
Martin Reinecke committed
78
79
80
81
        if covariance is None:
            self._op = SquaredNormOperator(self._domain).scale(0.5)
        else:
            self._op = QuadraticFormOperator(covariance.inverse)
Martin Reinecke's avatar
Martin Reinecke committed
82
83
84
85
86
87
88
89
90
91
92
        self._icov = None if covariance is None else covariance.inverse

    def _checkEquivalence(self, newdom):
        if self._domain is None:
            self._domain = newdom
        else:
            if self._domain is not newdom:
                raise ValueError("domain mismatch")

    def apply(self, x):
        residual = x if self._mean is None else x-self._mean
Martin Reinecke's avatar
Martin Reinecke committed
93
        res = self._op(residual)
Martin Reinecke's avatar
Martin Reinecke committed
94
95
96
97
98
99
100
101
102
        if not isinstance(x, Linearization):
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
    def __init__(self, op, d):
        self._op, self._d = op, d
Martin Reinecke's avatar
Martin Reinecke committed
103
        self._domain = d.domain
Martin Reinecke's avatar
Martin Reinecke committed
104
105
106
107
108

    def apply(self, x):
        x = self._op(x)
        res = x.sum() - x.log().vdot(self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
109
            return Field(self._target, res)
Martin Reinecke's avatar
Martin Reinecke committed
110
111
112
113
114
115
116
117
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)


class BernoulliEnergy(EnergyOperator):
    def __init__(self, p, d):
        self._p = p
        self._d = d
Martin Reinecke's avatar
Martin Reinecke committed
118
        self._domain = d.domain
Martin Reinecke's avatar
Martin Reinecke committed
119
120
121
122
123

    def apply(self, x):
        x = self._p(x)
        v = x.log().vdot(-self._d) - (1.-x).log().vdot(1.-self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
124
            return Field(self._target, v)
Martin Reinecke's avatar
Martin Reinecke committed
125
126
127
128
129
130
131
132
133
134
        met = makeOp(1./(x.val*(1.-x.val)))
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


class Hamiltonian(EnergyOperator):
    def __init__(self, lh, ic_samp=None):
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
135
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
136
137
138

    def apply(self, x):
        if self._ic_samp is None or not isinstance(x, Linearization):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
139
            return self._lh(x)+self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        else:
            lhx = self._lh(x)
            prx = self._prior(x)
            mtr = SamplingEnabler(lhx.metric, prx.metric.inverse,
                                  self._ic_samp, prx.metric.inverse)
            return (lhx+prx).add_metric(mtr)


class SampledKullbachLeiblerDivergence(EnergyOperator):
    def __init__(self, h, res_samples):
        """
        # MR FIXME: does h have to be a Hamiltonian? Couldn't it be any energy?
        h: Hamiltonian
        N: Number of samples to be used
        """
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
156
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
157
158
159
        self._res_samples = tuple(res_samples)

    def apply(self, x):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
160
161
162
        res = (utilities.my_sum(map(lambda v: self._h(x+v), self._res_samples)) *
               (1./len(self._res_samples)))
        return res