fft_operator_support.py 6.07 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import division
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
21
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
22
from .. import dobj
Martin Reinecke's avatar
Martin Reinecke committed
23
24
from ..field import Field
from ..spaces.gl_space import GLSpace
Martin Reinecke's avatar
Martin Reinecke committed
25

Martin Reinecke's avatar
Martin Reinecke committed
26

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
27
class Transformation(object):
Martin Reinecke's avatar
Martin Reinecke committed
28
29
30
31
    def __init__(self, pdom, hdom, space):
        self.pdom = pdom
        self.hdom = hdom
        self.space = space
Martin Reinecke's avatar
Martin Reinecke committed
32
33
34


class RGRGTransformation(Transformation):
Martin Reinecke's avatar
Martin Reinecke committed
35
    def __init__(self, pdom, hdom, space):
Martin Reinecke's avatar
Martin Reinecke committed
36
        import pyfftw
Martin Reinecke's avatar
Martin Reinecke committed
37
        super(RGRGTransformation, self).__init__(pdom, hdom, space)
Martin Reinecke's avatar
Martin Reinecke committed
38
        pyfftw.interfaces.cache.enable()
Martin Reinecke's avatar
Martin Reinecke committed
39
40
41
42
43
44
45
        # correct for forward/inverse fft.
        # naively one would set power to 0.5 here in order to
        # apply effectively a factor of 1/sqrt(N) to the field.
        # BUT: the pixel volumes of the domain and codomain are different.
        # Hence, in order to produce the same scalar product, power==1.
        self.fct_p2h = pdom[space].scalar_dvol()
        self.fct_h2p = 1./(pdom[space].scalar_dvol()*hdom[space].dim)
Martin Reinecke's avatar
Martin Reinecke committed
46
47
48
49
50

    @property
    def unitary(self):
        return True

Martin Reinecke's avatar
Martin Reinecke committed
51
    def transform(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
52
53
54
55
56
        """
        RG -> RG transform method.

        Parameters
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
57
58
        x : Field
            The field to be transformed
Martin Reinecke's avatar
Martin Reinecke committed
59
        """
Martin Reinecke's avatar
Martin Reinecke committed
60
        from pyfftw.interfaces.numpy_fft import fftn
Martin Reinecke's avatar
Martin Reinecke committed
61
62
        axes = x.domain.axes[self.space]
        p2h = x.domain == self.pdom
Martin Reinecke's avatar
Martin Reinecke committed
63
        tdom = self.hdom if p2h else self.pdom
Martin Reinecke's avatar
Martin Reinecke committed
64
        oldax = dobj.distaxis(x.val)
65
66
67
68
        if oldax not in axes:  # straightforward, no redistribution needed
            ldat = dobj.local_data(x.val)
            ldat = utilities.hartley(ldat, axes=axes)
            tmp = dobj.from_local_data(x.val.shape, ldat, distaxis=oldax)
Martin Reinecke's avatar
Martin Reinecke committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        elif len(axes) < len(x.shape) or len(axes) == 1:
            # we can use one Hartley pass in between the redistributions
            tmp = dobj.redistribute(x.val, nodist=axes)
            newax = dobj.distaxis(tmp)
            ldat = dobj.local_data(tmp)
            ldat = utilities.hartley(ldat, axes=axes)
            tmp = dobj.from_local_data(tmp.shape, ldat, distaxis=newax)
            tmp = dobj.redistribute(tmp, dist=oldax)
        else:  # two separate, full FFTs needed
            tmp = dobj.redistribute(x.val, nodist=(oldax,))
            newax = dobj.distaxis(tmp)
            ldat = dobj.local_data(tmp)
            ldat = fftn(ldat, axes=(oldax,))
            tmp = dobj.from_local_data(tmp.shape, ldat, distaxis=newax)
            tmp = dobj.redistribute(tmp, dist=oldax)
            rem_axes = tuple(i for i in axes if i != oldax)
            ldat = dobj.local_data(tmp)
            ldat = fftn(ldat, axes=rem_axes)
            ldat = ldat.real+ldat.imag
            tmp = dobj.from_local_data(tmp.shape, ldat, distaxis=oldax)
Martin Reinecke's avatar
Martin Reinecke committed
89
        Tval = Field(tdom, tmp)
Martin Reinecke's avatar
Martin Reinecke committed
90
91
92
        fct = self.fct_p2h if p2h else self.fct_h2p
        if fct != 1:
            Tval *= fct
Martin Reinecke's avatar
Martin Reinecke committed
93

Martin Reinecke's avatar
Martin Reinecke committed
94
        return Tval
Martin Reinecke's avatar
Martin Reinecke committed
95
96


97
class SphericalTransformation(Transformation):
Martin Reinecke's avatar
Martin Reinecke committed
98
99
    def __init__(self, pdom, hdom, space):
        super(SphericalTransformation, self).__init__(pdom, hdom, space)
Martin Reinecke's avatar
Martin Reinecke committed
100
101
        from pyHealpix import sharpjob_d

Martin Reinecke's avatar
Martin Reinecke committed
102
        self.lmax = self.hdom[self.space].lmax
103
        self.mmax = self.hdom[self.space].mmax
Martin Reinecke's avatar
Martin Reinecke committed
104
        self.sjob = sharpjob_d()
105
        self.sjob.set_triangular_alm_info(self.lmax, self.mmax)
Martin Reinecke's avatar
Martin Reinecke committed
106
107
108
        if isinstance(self.pdom[self.space], GLSpace):
            self.sjob.set_Gauss_geometry(self.pdom[self.space].nlat,
                                         self.pdom[self.space].nlon)
Martin Reinecke's avatar
Martin Reinecke committed
109
        else:
Martin Reinecke's avatar
Martin Reinecke committed
110
            self.sjob.set_Healpix_geometry(self.pdom[self.space].nside)
Martin Reinecke's avatar
Martin Reinecke committed
111
112
113
114
115

    @property
    def unitary(self):
        return False

Martin Reinecke's avatar
Martin Reinecke committed
116
117
    def _slice_p2h(self, inp):
        rr = self.sjob.map2alm(inp)
118
119
120
121
122
123
124
        assert len(rr) == ((self.mmax+1)*(self.mmax+2))//2 + \
                          (self.mmax+1)*(self.lmax-self.mmax)
        res = np.empty(2*len(rr)-self.lmax-1, dtype=rr[0].real.dtype)
        res[0:self.lmax+1] = rr[0:self.lmax+1].real
        res[self.lmax+1::2] = np.sqrt(2)*rr[self.lmax+1:].real
        res[self.lmax+2::2] = np.sqrt(2)*rr[self.lmax+1:].imag
        return res
Martin Reinecke's avatar
Martin Reinecke committed
125

Martin Reinecke's avatar
Martin Reinecke committed
126
    def _slice_h2p(self, inp):
127
128
129
130
131
132
133
134
135
136
        res = np.empty((len(inp)+self.lmax+1)//2, dtype=(inp[0]*1j).dtype)
        assert len(res) == ((self.mmax+1)*(self.mmax+2))//2 + \
                           (self.mmax+1)*(self.lmax-self.mmax)
        res[0:self.lmax+1] = inp[0:self.lmax+1]
        res[self.lmax+1:] = np.sqrt(0.5)*(inp[self.lmax+1::2] +
                                          1j*inp[self.lmax+2::2])
        return self.sjob.alm2map(res)

    def transform(self, x):
        axes = x.domain.axes[self.space]
Martin Reinecke's avatar
Martin Reinecke committed
137
138
        axis = axes[0]
        tval = x.val
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
139
        if dobj.distaxis(tval) == axis:
Martin Reinecke's avatar
Martin Reinecke committed
140
            tval = dobj.redistribute(tval, nodist=(axis,))
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
141
        distaxis = dobj.distaxis(tval)
Martin Reinecke's avatar
Martin Reinecke committed
142

Martin Reinecke's avatar
Martin Reinecke committed
143
        p2h = x.domain == self.pdom
Martin Reinecke's avatar
Martin Reinecke committed
144
145
        tdom = self.hdom if p2h else self.pdom
        func = self._slice_p2h if p2h else self._slice_h2p
Martin Reinecke's avatar
Martin Reinecke committed
146
        idat = dobj.local_data(tval)
Martin Reinecke's avatar
Martin Reinecke committed
147
148
149
150
151
152
153
154
        odat = np.empty(dobj.local_shape(tdom.shape, distaxis=distaxis),
                        dtype=x.dtype)
        for slice in utilities.get_slice_list(idat.shape, axes):
            odat[slice] = func(idat[slice])
        odat = dobj.from_local_data(tdom.shape, odat, distaxis)
        if distaxis != dobj.distaxis(x.val):
            odat = dobj.redistribute(odat, dist=dobj.distaxis(x.val))
        return Field(tdom, odat)