line_search_strong_wolfe.py 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

Martin Reinecke's avatar
Martin Reinecke committed
19
from __future__ import print_function
Martin Reinecke's avatar
Martin Reinecke committed
20
21
from __future__ import division
from builtins import range
22
23
24
import numpy as np

from .line_search import LineSearch
25
from ...energies import LineEnergy
26
27
28


class LineSearchStrongWolfe(LineSearch):
29
    """Class for finding a step size that satisfies the strong Wolfe conditions.
30

31
    Algorithm contains two stages. It begins with a trial step length and
Martin Reinecke's avatar
Martin Reinecke committed
32
33
    keeps increasing it until it finds an acceptable step length or an
    interval. If it does not satisfy the Wolfe conditions, it performs the Zoom
34
35
36
    algorithm (second stage). By interpolating it decreases the size of the
    interval until an acceptable step length is found.

37
38
    Parameters
    ----------
39
    c1 : float
40
        Parameter for Armijo condition rule. (Default: 1e-4)
41
    c2 : float
42
        Parameter for curvature condition rule. (Default: 0.9)
43
    max_step_size : float
44
        Maximum step allowed in to be made in the descent direction.
45
46
47
48
49
        (Default: 50)
    max_iterations : integer
        Maximum number of iterations performed by the line search algorithm.
        (Default: 10)
    max_zoom_iterations : integer
50
        Maximum number of iterations performed by the zoom algorithm.
51
        (Default: 10)
52

53
54
55
56
57
58
    Attributes
    ----------
    c1 : float
        Parameter for Armijo condition rule.
    c2 : float
        Parameter for curvature condition rule.
59
    max_step_size : float
60
        Maximum step allowed in to be made in the descent direction.
61
62
63
64
    max_iterations : integer
        Maximum number of iterations performed by the line search algorithm.
    max_zoom_iterations : integer
        Maximum number of iterations performed by the zoom algorithm.
65

66
67
68
    """

    def __init__(self, c1=1e-4, c2=0.9,
Martin Reinecke's avatar
Martin Reinecke committed
69
                 max_step_size=1000000000, max_iterations=100,
Martin Reinecke's avatar
Martin Reinecke committed
70
                 max_zoom_iterations=30):
71
72
73
74
75
76
77
78
79

        super(LineSearchStrongWolfe, self).__init__()

        self.c1 = np.float(c1)
        self.c2 = np.float(c2)
        self.max_step_size = max_step_size
        self.max_iterations = int(max_iterations)
        self.max_zoom_iterations = int(max_zoom_iterations)

80
    def perform_line_search(self, energy, pk, f_k_minus_1=None):
81
        """Performs the first stage of the algorithm.
82
83

        It starts with a trial step size and it keeps increasing it until it
84
85
        satisfies the strong Wolf conditions. It also performs the descent and
        returns the optimal step length and the new energy.
86

87
88
89
90
91
92
        Parameters
        ----------
        energy : Energy object
            Energy object from which we will calculate the energy and the
            gradient at a specific point.
        pk : Field
93
            Vector pointing into the search direction.
94
        f_k_minus_1 : float
95
            Value of the fuction (which is being minimized) at the k-1
96
            iteration of the line search procedure. (Default: None)
97

98
99
100
101
        Returns
        -------
        energy_star : Energy object
            The new Energy object on the new position.
102
103
104

        """

105
        le_0 = LineEnergy(0., energy, pk, 0.)
106
107

        # initialize the zero phis
108
        old_phi_0 = f_k_minus_1
Martin Reinecke's avatar
Martin Reinecke committed
109
        phi_0 = le_0.value
110
        phiprime_0 = le_0.directional_derivative
Theo Steininger's avatar
Theo Steininger committed
111
112
113
        if phiprime_0 >= 0:
            self.logger.error("Input direction must be a descent direction")
            raise RuntimeError
114
115
116

        # set alphas
        alpha0 = 0.
117
118
119
        phi_alpha0 = phi_0
        phiprime_alpha0 = phiprime_0

120
121
        if self.preferred_initial_step_size is not None:
            alpha1 = self.preferred_initial_step_size
122
        elif old_phi_0 is not None:
123
124
125
126
            alpha1 = min(1.0, 1.01*2*(phi_0 - old_phi_0)/phiprime_0)
            if alpha1 < 0:
                alpha1 = 1.0
        else:
Martin Reinecke's avatar
Martin Reinecke committed
127
            alpha1 = 1.0/pk.norm()
128
129

        # start the minimization loop
Martin Reinecke's avatar
Martin Reinecke committed
130
        for i in range(self.max_iterations):
131
132
            if alpha1 == 0:
                self.logger.warn("Increment size became 0.")
133
134
135
136
                return le_0.energy

            le_alpha1 = le_0.at(alpha1)
            phi_alpha1 = le_alpha1.value
137

Martin Reinecke's avatar
Martin Reinecke committed
138
            if (phi_alpha1 > phi_0 + self.c1*alpha1*phiprime_0) or \
Martin Reinecke's avatar
Martin Reinecke committed
139
               ((phi_alpha1 >= phi_alpha0) and (i > 0)):
140
141
142
143
                le_star = self._zoom(alpha0, alpha1, phi_0, phiprime_0,
                                     phi_alpha0, phiprime_alpha0, phi_alpha1,
                                     le_0)
                return le_star.energy
144

145
            phiprime_alpha1 = le_alpha1.directional_derivative
Martin Reinecke's avatar
Martin Reinecke committed
146
            if abs(phiprime_alpha1) <= -self.c2*phiprime_0:
147
                return le_alpha1.energy
148
149

            if phiprime_alpha1 >= 0:
150
151
152
153
                le_star = self._zoom(alpha1, alpha0, phi_0, phiprime_0,
                                     phi_alpha1, phiprime_alpha1, phi_alpha0,
                                     le_0)
                return le_star.energy
154
155

            # update alphas
156
157
            alpha0, alpha1 = alpha1, min(2*alpha1, self.max_step_size)
            if alpha1 == self.max_step_size:
Martin Reinecke's avatar
Martin Reinecke committed
158
                print ("reached max step size, bailing out")
159
160
                return le_alpha1.energy

161
162
163
164
165
166
            phi_alpha0 = phi_alpha1
            phiprime_alpha0 = phiprime_alpha1

        else:
            # max_iterations was reached
            self.logger.error("The line search algorithm did not converge.")
167
            return le_alpha1.energy
168
169

    def _zoom(self, alpha_lo, alpha_hi, phi_0, phiprime_0,
170
              phi_lo, phiprime_lo, phi_hi, le_0):
171
        """Performs the second stage of the line search algorithm.
172
173
174

        If the first stage was not successful then the Zoom algorithm tries to
        find a suitable step length by using bisection, quadratic, cubic
175
        interpolation.
176

177
178
179
        Parameters
        ----------
        alpha_lo : float
Martin Reinecke's avatar
Martin Reinecke committed
180
181
            A boundary for the step length interval.
            Fulfills Wolfe condition 1.
Martin Reinecke's avatar
Martin Reinecke committed
182
        alpha_hi : float
Martin Reinecke's avatar
Martin Reinecke committed
183
            The other boundary for the step length interval.
184
        phi_0 : float
185
            Value of the energy at the starting point of the line search
186
187
188
189
            algorithm.
        phiprime_0 : Field
            Gradient at the starting point of the line search algorithm.
        phi_lo : float
190
            Value of the energy if we perform a step of length alpha_lo in
191
192
            descent direction.
        phiprime_lo : Field
193
            Gradient at the nwe position if we perform a step of length
194
195
            alpha_lo in descent direction.
        phi_hi : float
196
            Value of the energy if we perform a step of length alpha_hi in
197
            descent direction.
198

199
200
201
202
        Returns
        -------
        energy_star : Energy object
            The new Energy object on the new position.
203

204
        """
205
206
207
        # define the cubic and quadratic interpolant checks
        cubic_delta = 0.2  # cubic
        quad_delta = 0.1  # quadratic
Theo Steininger's avatar
Theo Steininger committed
208
209
        alpha_recent = None
        phi_recent = None
210

Martin Reinecke's avatar
Martin Reinecke committed
211
        assert phi_lo <= phi_0 + self.c1*alpha_lo*phiprime_0
Theo Steininger's avatar
Theo Steininger committed
212
        assert phiprime_lo*(alpha_hi-alpha_lo) < 0.
Martin Reinecke's avatar
Martin Reinecke committed
213
        for i in range(self.max_zoom_iterations):
Theo Steininger's avatar
Theo Steininger committed
214
215
            # assert phi_lo <= phi_0 + self.c1*alpha_lo*phiprime_0
            # assert phiprime_lo*(alpha_hi-alpha_lo)<0.
216
            delta_alpha = alpha_hi - alpha_lo
217
            a, b = min(alpha_lo, alpha_hi), max(alpha_lo, alpha_hi)
218
219
220
221
222
223
224
225
226
227
228
229
230

            # Try cubic interpolation
            if i > 0:
                cubic_check = cubic_delta * delta_alpha
                alpha_j = self._cubicmin(alpha_lo, phi_lo, phiprime_lo,
                                         alpha_hi, phi_hi,
                                         alpha_recent, phi_recent)
            # If cubic was not successful or not available, try quadratic
            if (i == 0) or (alpha_j is None) or (alpha_j > b - cubic_check) or\
               (alpha_j < a + cubic_check):
                quad_check = quad_delta * delta_alpha
                alpha_j = self._quadmin(alpha_lo, phi_lo, phiprime_lo,
                                        alpha_hi, phi_hi)
231
                # If quadratic was not successful, try bisection
232
233
234
235
236
                if (alpha_j is None) or (alpha_j > b - quad_check) or \
                   (alpha_j < a + quad_check):
                    alpha_j = alpha_lo + 0.5*delta_alpha

            # Check if the current value of alpha_j is already sufficient
237
            le_alphaj = le_0.at(alpha_j)
Martin Reinecke's avatar
Martin Reinecke committed
238
            phi_alphaj = le_alphaj.value
239

240
241
            # If the first Wolfe condition is not met replace alpha_hi
            # by alpha_j
242
            if (phi_alphaj > phi_0 + self.c1*alpha_j*phiprime_0) or \
243
244
245
246
               (phi_alphaj >= phi_lo):
                alpha_recent, phi_recent = alpha_hi, phi_hi
                alpha_hi, phi_hi = alpha_j, phi_alphaj
            else:
247
                phiprime_alphaj = le_alphaj.directional_derivative
248
                # If the second Wolfe condition is met, return the result
Martin Reinecke's avatar
Martin Reinecke committed
249
                if abs(phiprime_alphaj) <= -self.c2*phiprime_0:
250
                    return le_alphaj
251
252
253
254
255
256
257
258
259
260
261
262
263
                # If not, check the sign of the slope
                if phiprime_alphaj*delta_alpha >= 0:
                    alpha_recent, phi_recent = alpha_hi, phi_hi
                    alpha_hi, phi_hi = alpha_lo, phi_lo
                else:
                    alpha_recent, phi_recent = alpha_lo, phi_lo
                # Replace alpha_lo by alpha_j
                (alpha_lo, phi_lo, phiprime_lo) = (alpha_j, phi_alphaj,
                                                   phiprime_alphaj)

        else:
            self.logger.error("The line search algorithm (zoom) did not "
                              "converge.")
264
            return le_alphaj
265
266

    def _cubicmin(self, a, fa, fpa, b, fb, c, fc):
267
        """Estimating the minimum with cubic interpolation.
268

269
        Finds the minimizer for a cubic polynomial that goes through the
270
271
        points ( a,f(a) ), ( b,f(b) ), and ( c,f(c) ) with derivative at point
        a of fpa.
272
        f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D
273
        If no minimizer can be found return None
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        Parameters
        ----------
        a : float
            Selected point.
        fa : float
            Value of polynomial at point a.
        fpa : Field
            Derivative at point a.
        b : float
            Selected point.
        fb : float
            Value of polynomial at point b.
        c : float
            Selected point.
        fc : float
            Value of polynomial at point c.
291

292
293
294
295
        Returns
        -------
        xmin : float
            Position of the approximated minimum.
296

297
298
299
300
301
302
303
        """

        with np.errstate(divide='raise', over='raise', invalid='raise'):
            try:
                C = fpa
                db = b - a
                dc = c - a
304
                denom = db * db * dc * dc * (db - dc)
305
                d1 = np.empty((2, 2))
306
307
308
309
                d1[0, 0] = dc * dc
                d1[0, 1] = -(db*db)
                d1[1, 0] = -(dc*dc*dc)
                d1[1, 1] = db*db*db
310
311
312
313
314
315
316
317
318
319
320
321
322
                [A, B] = np.dot(d1, np.asarray([fb - fa - C * db,
                                                fc - fa - C * dc]).flatten())
                A /= denom
                B /= denom
                radical = B * B - 3 * A * C
                xmin = a + (-B + np.sqrt(radical)) / (3 * A)
            except ArithmeticError:
                return None
        if not np.isfinite(xmin):
            return None
        return xmin

    def _quadmin(self, a, fa, fpa, b, fb):
323
        """Estimating the minimum with quadratic interpolation.
324

325
        Finds the minimizer for a quadratic polynomial that goes through
326
327
        the points ( a,f(a) ), ( b,f(b) ) with derivative at point a of fpa.
        f(x) = B*(x-a)^2 + C*(x-a) + D
328

329
330
331
332
333
334
335
336
337
338
339
340
        Parameters
        ----------
        a : float
            Selected point.
        fa : float
            Value of polynomial at point a.
        fpa : Field
            Derivative at point a.
        b : float
            Selected point.
        fb : float
            Value of polynomial at point b.
341

342
343
344
        Returns
        -------
        xmin : float
345
            Position of the approximated minimum.
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        """
        # f(x) = B*(x-a)^2 + C*(x-a) + D
        with np.errstate(divide='raise', over='raise', invalid='raise'):
            try:
                D = fa
                C = fpa
                db = b - a * 1.0
                B = (fb - D - C * db) / (db * db)
                xmin = a - C / (2.0 * B)
            except ArithmeticError:
                return None
        if not np.isfinite(xmin):
            return None
        return xmin