fft_operator_support.py 5.92 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import division
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
21
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
22
from .. import dobj
Martin Reinecke's avatar
Martin Reinecke committed
23
24
from ..field import Field
from ..spaces.gl_space import GLSpace
Martin Reinecke's avatar
Martin Reinecke committed
25

Martin Reinecke's avatar
Martin Reinecke committed
26

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
27
class Transformation(object):
Martin Reinecke's avatar
Martin Reinecke committed
28
29
30
31
    def __init__(self, pdom, hdom, space):
        self.pdom = pdom
        self.hdom = hdom
        self.space = space
Martin Reinecke's avatar
Martin Reinecke committed
32
33
34


class RGRGTransformation(Transformation):
Martin Reinecke's avatar
Martin Reinecke committed
35
    def __init__(self, pdom, hdom, space):
Martin Reinecke's avatar
Martin Reinecke committed
36
        import pyfftw
Martin Reinecke's avatar
Martin Reinecke committed
37
        super(RGRGTransformation, self).__init__(pdom, hdom, space)
Martin Reinecke's avatar
Martin Reinecke committed
38
        pyfftw.interfaces.cache.enable()
Martin Reinecke's avatar
Martin Reinecke committed
39
40
41
42
43
44
45
        # correct for forward/inverse fft.
        # naively one would set power to 0.5 here in order to
        # apply effectively a factor of 1/sqrt(N) to the field.
        # BUT: the pixel volumes of the domain and codomain are different.
        # Hence, in order to produce the same scalar product, power==1.
        self.fct_p2h = pdom[space].scalar_dvol()
        self.fct_h2p = 1./(pdom[space].scalar_dvol()*hdom[space].dim)
Martin Reinecke's avatar
Martin Reinecke committed
46
47
48
49
50

    @property
    def unitary(self):
        return True

Martin Reinecke's avatar
Martin Reinecke committed
51
    def transform(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
52
53
54
55
56
        """
        RG -> RG transform method.

        Parameters
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
57
58
        x : Field
            The field to be transformed
Martin Reinecke's avatar
Martin Reinecke committed
59
        """
Martin Reinecke's avatar
Martin Reinecke committed
60
        from pyfftw.interfaces.numpy_fft import fftn
Martin Reinecke's avatar
Martin Reinecke committed
61
62
        axes = x.domain.axes[self.space]
        p2h = x.domain == self.pdom
Martin Reinecke's avatar
Martin Reinecke committed
63
        tdom = self.hdom if p2h else self.pdom
Martin Reinecke's avatar
Martin Reinecke committed
64
        oldax = dobj.distaxis(x.val)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
65
        if dobj.distaxis(x.val) in axes:
Martin Reinecke's avatar
Martin Reinecke committed
66
67
            tmp = dobj.redistribute(x.val, nodist=(oldax,))
            newax = dobj.distaxis(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
68
            ldat = dobj.local_data(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
69
            if len(axes) == 1:  # only one transform needed
Martin Reinecke's avatar
Martin Reinecke committed
70
                ldat = utilities.hartley(ldat, axes=(oldax,))
Martin Reinecke's avatar
Martin Reinecke committed
71
72
73
74
75
76
77
                tmp = dobj.from_local_data(tmp.shape, ldat, distaxis=newax)
                tmp = dobj.redistribute(tmp, dist=oldax)
            else:  # two separate transforms needed, "real" FFT required
                ldat = fftn(ldat, axes=(oldax,))
                tmp = dobj.from_local_data(tmp.shape, ldat, distaxis=newax)
                tmp = dobj.redistribute(tmp, dist=oldax)
                rem_axes = tuple(i for i in axes if i != oldax)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
78
                ldat = dobj.local_data(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
79
                ldat = fftn(ldat, axes=rem_axes)
Martin Reinecke's avatar
Martin Reinecke committed
80
                ldat = ldat.real+ldat.imag
Martin Reinecke's avatar
Martin Reinecke committed
81
                tmp = dobj.from_local_data(tmp.shape, ldat, distaxis=oldax)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
82
        else:
Martin Reinecke's avatar
Martin Reinecke committed
83
            ldat = dobj.local_data(x.val)
Martin Reinecke's avatar
Martin Reinecke committed
84
            ldat = utilities.hartley(ldat, axes=axes)
Martin Reinecke's avatar
Martin Reinecke committed
85
86
            tmp = dobj.from_local_data(x.val.shape, ldat, distaxis=oldax)
        Tval = Field(tdom, tmp)
Martin Reinecke's avatar
Martin Reinecke committed
87
88
89
        fct = self.fct_p2h if p2h else self.fct_h2p
        if fct != 1:
            Tval *= fct
Martin Reinecke's avatar
Martin Reinecke committed
90

Martin Reinecke's avatar
Martin Reinecke committed
91
        return Tval
Martin Reinecke's avatar
Martin Reinecke committed
92
93


94
class SphericalTransformation(Transformation):
Martin Reinecke's avatar
Martin Reinecke committed
95
96
    def __init__(self, pdom, hdom, space):
        super(SphericalTransformation, self).__init__(pdom, hdom, space)
Martin Reinecke's avatar
Martin Reinecke committed
97
98
        from pyHealpix import sharpjob_d

Martin Reinecke's avatar
Martin Reinecke committed
99
        self.lmax = self.hdom[self.space].lmax
100
        self.mmax = self.hdom[self.space].mmax
Martin Reinecke's avatar
Martin Reinecke committed
101
        self.sjob = sharpjob_d()
102
        self.sjob.set_triangular_alm_info(self.lmax, self.mmax)
Martin Reinecke's avatar
Martin Reinecke committed
103
104
105
        if isinstance(self.pdom[self.space], GLSpace):
            self.sjob.set_Gauss_geometry(self.pdom[self.space].nlat,
                                         self.pdom[self.space].nlon)
Martin Reinecke's avatar
Martin Reinecke committed
106
        else:
Martin Reinecke's avatar
Martin Reinecke committed
107
            self.sjob.set_Healpix_geometry(self.pdom[self.space].nside)
Martin Reinecke's avatar
Martin Reinecke committed
108
109
110
111
112

    @property
    def unitary(self):
        return False

Martin Reinecke's avatar
Martin Reinecke committed
113
114
    def _slice_p2h(self, inp):
        rr = self.sjob.map2alm(inp)
115
116
117
118
119
120
121
        assert len(rr) == ((self.mmax+1)*(self.mmax+2))//2 + \
                          (self.mmax+1)*(self.lmax-self.mmax)
        res = np.empty(2*len(rr)-self.lmax-1, dtype=rr[0].real.dtype)
        res[0:self.lmax+1] = rr[0:self.lmax+1].real
        res[self.lmax+1::2] = np.sqrt(2)*rr[self.lmax+1:].real
        res[self.lmax+2::2] = np.sqrt(2)*rr[self.lmax+1:].imag
        return res
Martin Reinecke's avatar
Martin Reinecke committed
122

Martin Reinecke's avatar
Martin Reinecke committed
123
    def _slice_h2p(self, inp):
124
125
126
127
128
129
130
131
132
133
        res = np.empty((len(inp)+self.lmax+1)//2, dtype=(inp[0]*1j).dtype)
        assert len(res) == ((self.mmax+1)*(self.mmax+2))//2 + \
                           (self.mmax+1)*(self.lmax-self.mmax)
        res[0:self.lmax+1] = inp[0:self.lmax+1]
        res[self.lmax+1:] = np.sqrt(0.5)*(inp[self.lmax+1::2] +
                                          1j*inp[self.lmax+2::2])
        return self.sjob.alm2map(res)

    def transform(self, x):
        axes = x.domain.axes[self.space]
Martin Reinecke's avatar
Martin Reinecke committed
134
135
        axis = axes[0]
        tval = x.val
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
136
        if dobj.distaxis(tval) == axis:
Martin Reinecke's avatar
Martin Reinecke committed
137
            tval = dobj.redistribute(tval, nodist=(axis,))
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
138
        distaxis = dobj.distaxis(tval)
Martin Reinecke's avatar
Martin Reinecke committed
139

Martin Reinecke's avatar
Martin Reinecke committed
140
        p2h = x.domain == self.pdom
Martin Reinecke's avatar
Martin Reinecke committed
141
142
        tdom = self.hdom if p2h else self.pdom
        func = self._slice_p2h if p2h else self._slice_h2p
Martin Reinecke's avatar
Martin Reinecke committed
143
        idat = dobj.local_data(tval)
Martin Reinecke's avatar
Martin Reinecke committed
144
145
146
147
148
149
150
151
        odat = np.empty(dobj.local_shape(tdom.shape, distaxis=distaxis),
                        dtype=x.dtype)
        for slice in utilities.get_slice_list(idat.shape, axes):
            odat[slice] = func(idat[slice])
        odat = dobj.from_local_data(tdom.shape, odat, distaxis)
        if distaxis != dobj.distaxis(x.val):
            odat = dobj.redistribute(odat, dist=dobj.distaxis(x.val))
        return Field(tdom, odat)