test_smoothing_operator.py 4.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18
19
20

import unittest
import numpy as np
21
from numpy.testing import assert_equal, assert_allclose
22

23
24
25
from nifty import Field,\
    RGSpace,\
    PowerSpace,\
26
27
    FFTSmoothingOperator,\
    DirectSmoothingOperator
28

29
30
31
32
33
34
35
36
37
38
from itertools import product
from test.common import expand


def _get_rtol(tp):
    if (tp == np.float64) or (tp == np.complex128):
        return 1e-10
    else:
        return 1e-5

39
class SmoothingOperator_Tests(unittest.TestCase):
40
    spaces = [RGSpace(128)]
41

42
43
    @expand(product(spaces, [0., .5, 5.]))
    def test_property(self, space, sigma):
44
        op = FFTSmoothingOperator(space, sigma=sigma)
45
46
47
48
49
50
51
52
53
        if op.domain[0] != space:
            raise TypeError
        if op.unitary != False:
            raise ValueError
        if op.self_adjoint != True:
            raise ValueError
        if op.sigma != sigma:
            raise ValueError

54
55
    @expand(product(spaces, [0., .5, 5.]))
    def test_adjoint_times(self, space, sigma):
56
        op = FFTSmoothingOperator(space, sigma=sigma)
57
58
        rand1 = Field.from_random('normal', domain=space)
        rand2 = Field.from_random('normal', domain=space)
Martin Reinecke's avatar
Martin Reinecke committed
59
60
        tt1 = rand1.vdot(op.times(rand2))
        tt2 = rand2.vdot(op.adjoint_times(rand1))
61
        assert_allclose(tt1, tt2)
62

63
64
    @expand(product(spaces, [0., .5, 5.]))
    def test_times(self, space, sigma):
65
        op = FFTSmoothingOperator(space, sigma=sigma)
66
67
68
        rand1 = Field(space, val=0.)
        rand1.val[0] = 1.
        tt1 = op.times(rand1)
69
        assert_allclose(1, tt1.sum())
70

71
    @expand(product([128, 256], [1, 0.4], [0., 1.,  3.7],
72
73
74
75
                    [np.float64, np.complex128]))
    def test_smooth_regular1(self, sz, d, sigma, tp):
        tol = _get_rtol(tp)
        sp = RGSpace(sz, harmonic=True, distances=d)
76
        smo = FFTSmoothingOperator(sp, sigma=sigma)
77
78
79
80
81
82
83
84
85
86
        inp = Field.from_random(domain=sp, random_type='normal', std=1, mean=4,
                                dtype=tp)
        out = smo(inp)
        assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)

    @expand(product([10, 15], [7, 10], [1, 0.4], [2, 0.3], [0., 1.,  3.7],
                    [np.float64, np.complex128]))
    def test_smooth_regular2(self, sz1, sz2, d1, d2, sigma, tp):
        tol = _get_rtol(tp)
        sp = RGSpace([sz1, sz2], distances=[d1, d2], harmonic=True)
87
        smo = FFTSmoothingOperator(sp, sigma=sigma)
88
89
90
91
92
93
94
95
96
97
98
        inp = Field.from_random(domain=sp, random_type='normal', std=1, mean=4,
                                dtype=tp)
        out = smo(inp)
        assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)

    @expand(product([100, 200], [False, True], [0., 1.,  3.7],
                    [np.float64, np.complex128]))
    def test_smooth_irregular1(self, sz, log, sigma, tp):
        tol = _get_rtol(tp)
        sp = RGSpace(sz, harmonic=True)
        ps = PowerSpace(sp, nbin=sz, logarithmic=log)
99
        smo = DirectSmoothingOperator(ps, sigma=sigma)
100
101
102
103
104
105
106
107
108
109
110
        inp = Field.from_random(domain=ps, random_type='normal', std=1, mean=4,
                                dtype=tp)
        out = smo(inp)
        assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)

    @expand(product([10, 15], [7, 10], [False, True], [0., 1.,  3.7],
                    [np.float64, np.complex128]))
    def test_smooth_irregular2(self, sz1, sz2, log, sigma, tp):
        tol = _get_rtol(tp)
        sp = RGSpace([sz1, sz2], harmonic=True)
        ps = PowerSpace(sp, logarithmic=log)
111
        smo = DirectSmoothingOperator(ps, sigma=sigma)
112
113
114
115
        inp = Field.from_random(domain=ps, random_type='normal', std=1, mean=4,
                                dtype=tp)
        out = smo(inp)
        assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)