sugar.py 16.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

18
import sys
19
from time import time
20

21
import numpy as np
22

23
from .logger import logger
Martin Reinecke's avatar
stage 1    
Martin Reinecke committed
24
from . import utilities
25
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
26
from .domains.power_space import PowerSpace
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
27
from .field import Field
Martin Reinecke's avatar
Martin Reinecke committed
28
29
from .multi_domain import MultiDomain
from .multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
30
from .operators.block_diagonal_operator import BlockDiagonalOperator
Martin Reinecke's avatar
Martin Reinecke committed
31
from .operators.diagonal_operator import DiagonalOperator
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
32
from .operators.distributors import PowerDistributor
33
from .operators.operator import Operator
34
from .operators.scaling_operator import ScalingOperator
Lukas Platz's avatar
Lukas Platz committed
35
from .plot import Plot
36

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
37
38
__all__ = ['PS_field', 'power_analyze', 'create_power_operator',
           'create_harmonic_smoothing_operator', 'from_random',
Martin Reinecke's avatar
Martin Reinecke committed
39
           'full', 'makeField',
Martin Reinecke's avatar
Martin Reinecke committed
40
           'makeDomain', 'get_signal_variance', 'makeOp', 'domain_union',
Philipp Arras's avatar
Philipp Arras committed
41
42
           'get_default_codomain', 'single_plot', 'exec_time',
           'calculate_position']
43

44

45
def PS_field(pspace, func):
Martin Reinecke's avatar
Martin Reinecke committed
46
47
48
49
50
51
52
53
    """Convenience function sampling a power spectrum

    Parameters
    ----------
    pspace : PowerSpace
        space at whose `k_lengths` the power spectrum function is evaluated
    func : function taking and returning a numpy.ndarray(float)
        the power spectrum function
Martin Reinecke's avatar
Martin Reinecke committed
54

Martin Reinecke's avatar
Martin Reinecke committed
55
56
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
57
58
    Field
        A field defined on (pspace,) containing the computed function values
Martin Reinecke's avatar
Martin Reinecke committed
59
    """
Martin Reinecke's avatar
Martin Reinecke committed
60
61
    if not isinstance(pspace, PowerSpace):
        raise TypeError
Martin Reinecke's avatar
stage 1    
Martin Reinecke committed
62
    data = func(pspace.k_lengths)
63
    return Field(DomainTuple.make(pspace), data)
Martin Reinecke's avatar
Martin Reinecke committed
64

Martin Reinecke's avatar
Martin Reinecke committed
65

66
67
68
69
def get_signal_variance(spec, space):
    """
    Computes how much a field with a given power spectrum will vary in space

70
    This is a small helper function that computes the expected variance
71
72
73
74
75
76
77
78
    of a harmonically transformed sample of this power spectrum.

    Parameters
    ---------
    spec: method
        a method that takes one k-value and returns the power spectrum at that
        location
    space: PowerSpace or any harmonic Domain
Martin Reinecke's avatar
Martin Reinecke committed
79
80
81
82
        If this function is given a harmonic domain, it creates the naturally
        binned PowerSpace to that domain.
        The field, for which the signal variance is then computed, is assumed
        to have this PowerSpace as naturally binned PowerSpace
83
84
85
86
    """
    if space.harmonic:
        space = PowerSpace(space)
    if not isinstance(space, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
87
88
        raise ValueError(
            "space must be either a harmonic space or Power space.")
89
90
91
    field = PS_field(space, spec)
    dist = PowerDistributor(space.harmonic_partner, space)
    k_field = dist(field)
Martin Reinecke's avatar
Martin Reinecke committed
92
    return k_field.weight(2).s_sum()
93

94

95
96
def _single_power_analyze(field, idx, binbounds):
    power_domain = PowerSpace(field.domain[idx], binbounds)
Martin Reinecke's avatar
Martin Reinecke committed
97
98
    pd = PowerDistributor(field.domain, power_domain, idx)
    return pd.adjoint_times(field.weight(1)).weight(-1)  # divides by bin size
99
100


Martin Reinecke's avatar
Martin Reinecke committed
101
102
# MR FIXME: this function is not well suited for analyzing more than one
# subdomain at once, because it allows only one set of binbounds.
103
104
def power_analyze(field, spaces=None, binbounds=None,
                  keep_phase_information=False):
105
    """Computes the power spectrum for a subspace of `field`.
106
107

    Creates a PowerSpace for the space addressed by `spaces` with the given
108
    binning and computes the power spectrum as a :class:`Field` over this
109
    PowerSpace. This can only be done if the subspace to  be analyzed is a
Martin Reinecke's avatar
Martin Reinecke committed
110
111
    harmonic space. The resulting field has the same units as the square of the
    initial field.
112
113
114

    Parameters
    ----------
Philipp Arras's avatar
Fixups    
Philipp Arras committed
115
    field : Field
116
        The field to be analyzed
Martin Reinecke's avatar
Martin Reinecke committed
117
118
119
    spaces : None or int or tuple of int, optional
        The indices of subdomains for which the power spectrum shall be
        computed.
Martin Reinecke's avatar
Martin Reinecke committed
120
        If None, all subdomains will be converted.
121
        (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
122
    binbounds : None or array-like, optional
123
        Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
124
125
        if binbounds is None : bins are inferred.
    keep_phase_information : bool, optional
126
        If False, return a real-valued result containing the power spectrum
127
        of `field`.
128
        If True, return a complex-valued result whose real component
129
130
131
        contains the power spectrum computed from the real part of `field`,
        and whose imaginary component contains the power
        spectrum computed from the imaginary part of `field`.
132
133
134
135
136
137
        The absolute value of this result should be identical to the output
        of power_analyze with keep_phase_information=False.
        (default : False).

    Returns
    -------
Philipp Arras's avatar
Fixups    
Philipp Arras committed
138
    Field
139
        The output object. Its domain is a PowerSpace and it contains
Martin Reinecke's avatar
Martin Reinecke committed
140
        the power spectrum of `field`.
141
142
143
144
    """

    for sp in field.domain:
        if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
145
146
            logger.warning("WARNING: Field has a space in `domain` which is "
                           "neither harmonic nor a PowerSpace.")
147

148
    spaces = utilities.parse_spaces(spaces, len(field.domain))
149
150
151
152

    if len(spaces) == 0:
        raise ValueError("No space for analysis specified.")

Martin Reinecke's avatar
Martin Reinecke committed
153
    field_real = not utilities.iscomplextype(field.dtype)
154
155
156
    if (not field_real) and keep_phase_information:
        raise ValueError("cannot keep phase from real-valued input Field")

157
158
159
    if keep_phase_information:
        parts = [field.real*field.real, field.imag*field.imag]
    else:
160
161
162
163
        if field_real:
            parts = [field**2]
        else:
            parts = [field.real*field.real + field.imag*field.imag]
164
165

    for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
166
        parts = [_single_power_analyze(part, space_index, binbounds)
167
168
169
170
171
                 for part in parts]

    return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]


Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
172
def _create_power_field(domain, power_spectrum):
Philipp Arras's avatar
Philipp Arras committed
173
    if not callable(power_spectrum):  # we have a Field defined on a PowerSpace
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
174
175
176
177
178
179
180
        if not isinstance(power_spectrum, Field):
            raise TypeError("Field object expected")
        if len(power_spectrum.domain) != 1:
            raise ValueError("exactly one domain required")
        if not isinstance(power_spectrum.domain[0], PowerSpace):
            raise TypeError("PowerSpace required")
        power_domain = power_spectrum.domain[0]
181
        fp = power_spectrum
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
182
183
    else:
        power_domain = PowerSpace(domain)
184
        fp = PS_field(power_domain, power_spectrum)
185

Martin Reinecke's avatar
Martin Reinecke committed
186
    return PowerDistributor(domain, power_domain)(fp)
187

188

189
def create_power_operator(domain, power_spectrum, space=None):
190
    """Creates a diagonal operator with the given power spectrum.
191

Philipp Arras's avatar
Philipp Arras committed
192
    Constructs a diagonal operator that is defined on the specified domain.
193

194
195
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
196
    domain : Domain, tuple of Domain or DomainTuple
Philipp Arras's avatar
Philipp Arras committed
197
        Domain on which the power operator shall be defined.
Martin Reinecke's avatar
Martin Reinecke committed
198
199
    power_spectrum : callable or Field
        An object that contains the power spectrum as a function of k.
Martin Reinecke's avatar
Martin Reinecke committed
200
    space : int
Martin Reinecke's avatar
Martin Reinecke committed
201
        the domain index on which the power operator will work
Theo Steininger's avatar
Theo Steininger committed
202

203
204
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
205
206
    DiagonalOperator
        An operator that implements the given power spectrum.
207
    """
Martin Reinecke's avatar
Martin Reinecke committed
208
    domain = DomainTuple.make(domain)
Martin Reinecke's avatar
Martin Reinecke committed
209
    space = utilities.infer_space(domain, space)
Martin Reinecke's avatar
Martin Reinecke committed
210
211
    field = _create_power_field(domain[space], power_spectrum)
    return DiagonalOperator(field, domain, space)
212

213

214
def create_harmonic_smoothing_operator(domain, space, sigma):
Martin Reinecke's avatar
Martin Reinecke committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    """Creates an operator which smoothes a subspace of a harmonic domain.

    Parameters
    ----------
    domain: DomainTuple
        The total domain and target of the operator
    space : int
        the index of the subspace on which the operator acts.
        This must be a harmonic space
    sigma : float
        The sigma of the Gaussian smoothing kernel

    Returns
    -------
    DiagonalOperator
        The requested smoothing operator
    """
232
233
234
    kfunc = domain[space].get_fft_smoothing_kernel_function(sigma)
    return DiagonalOperator(kfunc(domain[space].get_k_length_array()), domain,
                            space)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
235
236
237


def full(domain, val):
Martin Reinecke's avatar
Martin Reinecke committed
238
239
240
241
242
243
244
245
246
247
248
    """Convenience function creating Fields/MultiFields with uniform values.

    Parameters
    ----------
    domain : Domainoid
        the intended domain of the output field
    val : scalar value
        the uniform value to be placed into all entries of the result

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
249
250
    Field or MultiField
        The newly created uniform field
Martin Reinecke's avatar
Martin Reinecke committed
251
    """
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
252
253
254
255
256
257
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.full(domain, val)
    return Field.full(domain, val)


def from_random(random_type, domain, dtype=np.float64, **kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    """Convenience function creating Fields/MultiFields with random values.

    Parameters
    ----------
    random_type : 'pm1', 'normal', or 'uniform'
            The random distribution to use.
    domain : Domainoid
        the intended domain of the output field
    dtype : type
        data type of the output field (e.g. numpy.float64)
    **kwargs : additional parameters for the random distribution
        ('mean' and 'std' for 'normal', 'low' and 'high' for 'uniform')

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
273
274
    Field or MultiField
        The newly created random field
Martin Reinecke's avatar
Martin Reinecke committed
275
    """
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
276
277
278
279
280
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_random(random_type, domain, dtype, **kwargs)
    return Field.from_random(random_type, domain, dtype, **kwargs)


Martin Reinecke's avatar
Martin Reinecke committed
281
def makeField(domain, arr):
Martin Reinecke's avatar
Martin Reinecke committed
282
283
284
285
286
287
288
289
290
291
292
293
    """Convenience function creating Fields/MultiFields from Numpy arrays or
    dicts of Numpy arrays.

    Parameters
    ----------
    domain : Domainoid
        the intended domain of the output field
    arr : Numpy array if `domain` corresponds to a `DomainTuple`,
          dictionary of Numpy arrays if `domain` corresponds to a `MultiDomain`

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
294
295
    Field or MultiField
        The newly created random field
Martin Reinecke's avatar
Martin Reinecke committed
296
    """
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
297
    if isinstance(domain, (dict, MultiDomain)):
Martin Reinecke's avatar
Martin Reinecke committed
298
299
        return MultiField.from_raw(domain, arr)
    return Field.from_raw(domain, arr)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
300
301
302


def makeDomain(domain):
Martin Reinecke's avatar
Martin Reinecke committed
303
304
305
306
    """Convenience function creating DomainTuples/MultiDomains Domainoids.

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
307
    domain : Domainoid (can be DomainTuple, MultiDomain, dict, Domain or list of Domains)
Martin Reinecke's avatar
Martin Reinecke committed
308
309
310
311
        the description of the requested (multi-)domain

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
312
313
    DomainTuple or MultiDomain
        The newly created domain object
Martin Reinecke's avatar
Martin Reinecke committed
314
    """
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
315
    if isinstance(domain, (MultiDomain, dict)):
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
316
317
        return MultiDomain.make(domain)
    return DomainTuple.make(domain)
318
319


320
def makeOp(input):
Martin Reinecke's avatar
Martin Reinecke committed
321
322
323
324
325
326
    """Converts a Field or MultiField to a diagonal operator.

    Parameters
    ----------
    input : None, Field or MultiField
        - if None, None is returned.
327
328
        - if Field on scalar-domain, a ScalingOperator with the coefficient
            given by the Field is returned.
Martin Reinecke's avatar
Martin Reinecke committed
329
330
331
332
333
334
335
336
337
        - if Field, a DiagonalOperator with the coefficients given by this
            Field is returned.
        - if MultiField, a BlockDiagonalOperator with entries given by this
            MultiField is returned.

    Notes
    -----
    No volume factors are applied.
    """
Martin Reinecke's avatar
Martin Reinecke committed
338
339
    if input is None:
        return None
340
341
    if input.domain is DomainTuple.scalar_domain():
        return ScalingOperator(input.domain, float(input.val))
Martin Reinecke's avatar
Martin Reinecke committed
342
343
344
    if isinstance(input, Field):
        return DiagonalOperator(input)
    if isinstance(input, MultiField):
Martin Reinecke's avatar
Martin Reinecke committed
345
        return BlockDiagonalOperator(
Martin Reinecke's avatar
fix    
Martin Reinecke committed
346
            input.domain, {key: makeOp(val) for key, val in input.items()})
Martin Reinecke's avatar
Martin Reinecke committed
347
348
    raise NotImplementedError

Martin Reinecke's avatar
more    
Martin Reinecke committed
349
350

def domain_union(domains):
Martin Reinecke's avatar
Martin Reinecke committed
351
352
353
354
355
356
357
358
    """Computes the union of multiple DomainTuples/MultiDomains.

    Parameters
    ----------
    domains : list of DomainTuple or MultiDomain
        - if DomainTuple, all entries must be equal
        - if MultiDomain, there must not be any conflicting components
    """
Martin Reinecke's avatar
more    
Martin Reinecke committed
359
    if isinstance(domains[0], DomainTuple):
Martin Reinecke's avatar
Martin Reinecke committed
360
        if any(dom != domains[0] for dom in domains[1:]):
Martin Reinecke's avatar
more    
Martin Reinecke committed
361
362
363
364
            raise ValueError("domain mismatch")
        return domains[0]
    return MultiDomain.union(domains)

Martin Reinecke's avatar
more    
Martin Reinecke committed
365

Martin Reinecke's avatar
Martin Reinecke committed
366
367
368
369
def clip(a, a_min=None, a_max=None):
    return a.clip(a_min, a_max)


370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
def get_default_codomain(domainoid, space=None):
    """For `RGSpace`, returns the harmonic partner domain.
    For `DomainTuple`, returns a copy of the object in which the domain
    indexed by `space` is substituted by its harmonic partner domain.
    In this case, if `space` is None, it is set to 0 if the `DomainTuple`
    contains exactly one domain.

    Parameters
    ----------
    domain: `RGSpace` or `DomainTuple`
        Domain for which to constuct the default harmonic partner
    space: int
        Optional index of the subdomain to be replaced by its default
        codomain. `domain[space]` must be of class `RGSpace`.
    """
    from .domains.rg_space import RGSpace
386
387
388
    from .domains.hp_space import HPSpace
    from .domains.gl_space import GLSpace
    from .domains.lm_space import LMSpace
389
390
391
392
393
394
    if isinstance(domainoid, RGSpace):
        return domainoid.get_default_codomain()
    if not isinstance(domainoid, DomainTuple):
        raise TypeError(
            'Works only on RGSpaces and DomainTuples containing those')
    space = utilities.infer_space(domainoid, space)
395
396
    if not isinstance(domainoid[space], (RGSpace, HPSpace, GLSpace, LMSpace)):
        raise TypeError("can only codomain structrued spaces")
397
398
399
    ret = [dom for dom in domainoid]
    ret[space] = domainoid[space].get_default_codomain()
    return DomainTuple.make(ret)
Lukas Platz's avatar
Lukas Platz committed
400
401
402
403
404
405
406
407
408
409
410


def single_plot(field, **kwargs):
    """Creates a single plot using `Plot`.
    Keyword arguments are passed to both `Plot.add` and `Plot.output`.
    """
    p = Plot()
    p.add(field, **kwargs)
    if 'title' in kwargs:
        del(kwargs['title'])
    p.output(**kwargs)
411
412
413
414


def exec_time(obj, want_metric=True):
    """Times the execution time of an operator or an energy."""
Philipp Arras's avatar
Philipp Arras committed
415
416
417
    from .linearization import Linearization
    from .minimization.energy import Energy
    from .operators.energy_operators import EnergyOperator
418
419
420
    if isinstance(obj, Energy):
        t0 = time()
        obj.at(0.99*obj.position)
421
        logger.info('Energy.at(): {}'.format(time() - t0))
422
423
424

        t0 = time()
        obj.value
425
        logger.info('Energy.value: {}'.format(time() - t0))
426
427
        t0 = time()
        obj.gradient
428
        logger.info('Energy.gradient: {}'.format(time() - t0))
429
430
        t0 = time()
        obj.metric
431
        logger.info('Energy.metric: {}'.format(time() - t0))
432
433
434

        t0 = time()
        obj.apply_metric(obj.position)
435
        logger.info('Energy.apply_metric: {}'.format(time() - t0))
436
437
438

        t0 = time()
        obj.metric(obj.position)
439
        logger.info('Energy.metric(position): {}'.format(time() - t0))
440
441
442
443
444
    elif isinstance(obj, Operator):
        want_metric = bool(want_metric)
        pos = from_random('normal', obj.domain)
        t0 = time()
        obj(pos)
445
        logger.info('Operator call with field: {}'.format(time() - t0))
446
447
448
449

        lin = Linearization.make_var(pos, want_metric=want_metric)
        t0 = time()
        res = obj(lin)
450
        logger.info('Operator call with linearization: {}'.format(time() - t0))
451
452
453
454

        if isinstance(obj, EnergyOperator):
            t0 = time()
            res.gradient
455
            logger.info('Gradient evaluation: {}'.format(time() - t0))
456
457
458
459

            if want_metric:
                t0 = time()
                res.metric(pos)
460
                logger.info('Metric apply: {}'.format(time() - t0))
461
462
    else:
        raise TypeError
Philipp Arras's avatar
Philipp Arras committed
463
464
465
466
467
468
469
470
471
472
473
474
475


def calculate_position(operator, output):
    """Finds approximate preimage of an operator for a given output."""
    from .minimization.descent_minimizers import NewtonCG
    from .minimization.iteration_controllers import GradientNormController
    from .minimization.metric_gaussian_kl import MetricGaussianKL
    from .operators.scaling_operator import ScalingOperator
    from .operators.energy_operators import GaussianEnergy, StandardHamiltonian
    if not isinstance(operator, Operator):
        raise TypeError
    if output.domain != operator.target:
        raise TypeError
Martin Reinecke's avatar
stage 3    
Martin Reinecke committed
476
    cov = 1e-3*output.val.max()**2
477
    invcov = ScalingOperator(output.domain, cov).inverse
Philipp Arras's avatar
Philipp Arras committed
478
    d = output + invcov.draw_sample(from_inverse=True)
Philipp Arras's avatar
Philipp Arras committed
479
    lh = GaussianEnergy(d, invcov) @ operator
Philipp Arras's avatar
Philipp Arras committed
480
481
482
483
484
485
486
487
488
    H = StandardHamiltonian(
        lh, ic_samp=GradientNormController(iteration_limit=200))
    pos = 0.1*from_random('normal', operator.domain)
    minimizer = NewtonCG(GradientNormController(iteration_limit=10))
    for ii in range(3):
        kl = MetricGaussianKL(pos, H, 3, mirror_samples=True)
        kl, _ = minimizer(kl)
        pos = kl.position
    return pos