linear_interpolation.py 5.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import absolute_import, division, print_function

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
21
import numpy as np
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
22
23
from scipy.sparse import coo_matrix
from scipy.sparse.linalg import aslinearoperator
24

Philipp Arras's avatar
Cleanup    
Philipp Arras committed
25
from ..compat import *
26
from ..domains.rg_space import RGSpace
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
27
28
from ..domains.unstructured_domain import UnstructuredDomain
from ..field import Field
29
from ..sugar import makeDomain
30
31
32
33
34
35
from .linear_operator import LinearOperator


class LinearInterpolator(LinearOperator):
    def __init__(self, domain, positions):
        """
36
        Multilinear interpolation for points in an RGSpace
37
38

        :param domain:
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
39
            RGSpace
40
41
42
        :param positions:
            positions at which to interpolate
            Field with UnstructuredDomain, shape (dim, ndata)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
43
            positions that are not within the RGSpace are wrapped
44
            according to periodic boundary conditions
45
46
47
48
49
50
51
52
53
        """
        self._domain = makeDomain(domain)
        N_points = positions.shape[1]
        self._target = makeDomain(UnstructuredDomain(N_points))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        self._build_mat(positions, N_points)

    def _build_mat(self, positions, N_points):
        ndim = positions.shape[0]
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
54
55
        mg = np.mgrid[(slice(0, 2),)*ndim]
        mg = np.array(list(map(np.ravel, mg)))
56
57
        dist = []
        for dom in self.domain:
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
58
            if not isinstance(dom, RGSpace):
59
                raise TypeError
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
60
61
            dist.append(list(dom.distances))
        dist = np.array(dist).reshape((-1, 1))
62
        pos = positions/dist
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
63
64
65
66
67
68
        excess = pos-pos.astype(np.int64)
        pos = pos.astype(np.int64)
        max_index = np.array(self.domain.shape).reshape(-1, 1)
        data = np.zeros((len(mg[0]), N_points))
        ii = np.zeros((len(mg[0]), N_points), dtype=np.int64)
        jj = np.zeros((len(mg[0]), N_points), dtype=np.int64)
69
        for i in range(len(mg[0])):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
70
71
            factor = np.prod(np.abs(1-mg[:, i].reshape((-1, 1))-excess),
                             axis=0)
72
            data[i, :] = factor
73
            fromi = (pos+mg[:, i].reshape((-1, 1))) % max_index
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
74
75
            ii[i, :] = np.arange(N_points)
            jj[i, :] = np.ravel_multi_index(fromi, self.domain.shape)
76
77
        self._mat = coo_matrix((data.reshape(-1),
                               (ii.reshape(-1), jj.reshape(-1))),
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
78
                               (N_points, np.prod(self.domain.shape)))
79
        self._mat = aslinearoperator(self._mat)
80

81
82
83
84
85
86
87
88
89
    def apply(self, x, mode):
        self._check_input(x, mode)
        x_val = x.to_global_data()
        if mode == self.TIMES:
            res = self._mat.matvec(x_val.reshape((-1,)))
            return Field.from_global_data(self.target, res)
        res = self._mat.rmatvec(x_val).reshape(self.domain.shape)
        return Field.from_global_data(self.domain, res)

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

# import numpy as np
# from ..domains.rg_space import RGSpace
# import itertools
#
#
# class LinearInterpolator(LinearOperator):
#     def __init__(self, domain, positions):
#         """
#         :param domain:
#             RGSpace
#         :param target:
#             UnstructuredDomain, shape (ndata,)
#         :param positions:
#             positions at which to interpolate
#             Field with UnstructuredDomain, shape (dim, ndata)
#         """
#         if not isinstance(domain, RGSpace):
#             raise TypeError("RGSpace needed")
#         if np.any(domain.shape < 2):
#             raise ValueError("RGSpace shape too small")
#         if positions.ndim != 2:
#             raise ValueError("positions must be a 2D array")
#         ndim = len(domain.shape)
#         if positions.shape[0] != ndim:
#             raise ValueError("shape mismatch")
#         self._domain = makeDomain(domain)
#         N_points = positions.shape[1]
#         dist = np.array(domain.distances).reshape((ndim, -1))
#         self._pos = positions/dist
#         shp = np.array(domain.shape, dtype=int).reshape((ndim, -1))
#         self._idx = np.maximum(0, np.minimum(shp-2, self._pos.astype(int)))
#         self._pos -= self._idx
#         tmp = tuple([0, 1] for i in range(ndim))
#         self._corners = np.array(list(itertools.product(*tmp)))
#         self._target = makeDomain(UnstructuredDomain(N_points))
#         self._capability = self.TIMES | self.ADJOINT_TIMES
#
#     def apply(self, x, mode):
#         self._check_input(x, mode)
#         x = x.to_global_data()
#         ndim = len(self._domain.shape)
#
#         res = np.zeros(self._tgt(mode).shape, dtype=x.dtype)
#         for corner in self._corners:
#             corner = corner.reshape(ndim, -1)
#             idx = self._idx+corner
#             idx2 = tuple(idx[t, :] for t in range(idx.shape[0]))
#             wgt = np.prod(self._pos*corner+(1-self._pos)*(1-corner), axis=0)
#             if mode == self.TIMES:
#                 res += wgt*x[idx2]
#             else:
#                 np.add.at(res, idx2, wgt*x)
#         return Field.from_global_data(self._tgt(mode), res)