correlated_fields.py 22.7 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras, Philipp Haim
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
Philipp Arras's avatar
Philipp Arras committed
24
from ..operators.adder import Adder
25
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
26
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
27
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
28
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
29
from ..operators.linear_operator import LinearOperator
30
from ..operators.diagonal_operator import DiagonalOperator
Philipp Arras's avatar
Philipp Arras committed
31
32
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
33
from ..probing import StatCalculator
Philipp Frank's avatar
cleanup    
Philipp Frank committed
34
from ..sugar import from_global_data, full, makeDomain
35

36

Philipp Haim's avatar
Philipp Haim committed
37
38
39
def _reshaper(x, N):
    x = np.asfarray(x)
    if x.shape in [(), (1,)]:
Philipp Haim's avatar
Philipp Haim committed
40
        return np.full(N, x) if N != 0 else x.reshape(())
Philipp Haim's avatar
Philipp Haim committed
41
42
    elif x.shape == (N,):
        return x
43
44
45
    else:
        raise TypeError("Shape of parameters cannot be interpreted")

46

Martin Reinecke's avatar
Martin Reinecke committed
47
def _lognormal_moments(mean, sig, N=0):
Philipp Haim's avatar
Philipp Haim committed
48
49
50
51
    if N == 0:
        mean, sig = np.asfarray(mean), np.asfarray(sig)
    else:
        mean, sig = (_reshaper(param, N) for param in (mean, sig))
Martin Reinecke's avatar
Martin Reinecke committed
52
    assert np.all(mean > 0)
53
    assert np.all(sig > 0)
Philipp Arras's avatar
Philipp Arras committed
54
55
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
56
    return logmean, logsig
Philipp Arras's avatar
Philipp Arras committed
57
58


Martin Reinecke's avatar
Martin Reinecke committed
59
def _normal(mean, sig, key, N=0):
Philipp Haim's avatar
Philipp Haim committed
60
    if N == 0:
Philipp Haim's avatar
Philipp Haim committed
61
        domain = DomainTuple.scalar_domain()
Philipp Haim's avatar
Philipp Haim committed
62
        mean, sig = np.asfarray(mean), np.asfarray(sig)
Philipp Haim's avatar
Philipp Haim committed
63
64
    else:
        domain = UnstructuredDomain(N)
Philipp Haim's avatar
Philipp Haim committed
65
        mean, sig = (_reshaper(param, N) for param in (mean, sig))
66
    return Adder(from_global_data(domain, mean)) @ (
Martin Reinecke's avatar
Martin Reinecke committed
67
        DiagonalOperator(from_global_data(domain, sig))
68
        @ ducktape(domain, None, key))
Philipp Arras's avatar
Philipp Arras committed
69
70


Philipp Arras's avatar
Philipp Arras committed
71
def _log_k_lengths(pspace):
Philipp Arras's avatar
Philipp Arras committed
72
    """Log(k_lengths) without zeromode"""
Philipp Arras's avatar
Philipp Arras committed
73
74
75
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
76
def _relative_log_k_lengths(power_space):
Philipp Arras's avatar
Philipp Arras committed
77
78
    """Log-distance to first bin
    logkl.shape==power_space.shape, logkl[0]=logkl[1]=0"""
Philipp Arras's avatar
Philipp Arras committed
79
80
81
82
83
84
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
Philipp Arras's avatar
Philipp Arras committed
85
    return np.insert(logkl, 0, 0)
Philipp Arras's avatar
Philipp Arras committed
86
87


Philipp Arras's avatar
Philipp Arras committed
88
def _log_vol(power_space):
89
    power_space = makeDomain(power_space)
Philipp Arras's avatar
Philipp Arras committed
90
91
92
93
94
    assert isinstance(power_space[0], PowerSpace)
    logk_lengths = _log_k_lengths(power_space[0])
    return logk_lengths[1:] - logk_lengths[:-1]


Philipp Haim's avatar
Philipp Haim committed
95
def _total_fluctuation_realized(samples):
96
97
    res = 0.
    for s in samples:
Philipp Haim's avatar
Fixes    
Philipp Haim committed
98
        res = res + (s - s.mean())**2
Philipp Haim's avatar
Philipp Haim committed
99
    return np.sqrt((res/len(samples)).mean())
100
101
102
103
104
105
106
107
108


def _stats(op, samples):
    sc = StatCalculator()
    for s in samples:
        sc.add(op(s.extract(op.domain)))
    return sc.mean.to_global_data(), sc.var.sqrt().to_global_data()


Philipp Arras's avatar
Philipp Arras committed
109
class _LognormalMomentMatching(Operator):
Philipp Haim's avatar
Philipp Haim committed
110
    def __init__(self, mean, sig, key, N_copies):
Philipp Arras's avatar
Philipp Arras committed
111
        key = str(key)
Philipp Haim's avatar
Philipp Haim committed
112
        logmean, logsig = _lognormal_moments(mean, sig, N_copies)
Philipp Arras's avatar
Philipp Arras committed
113
114
        self._mean = mean
        self._sig = sig
Philipp Haim's avatar
Philipp Haim committed
115
        op = _normal(logmean, logsig, key, N_copies).exp()
Philipp Arras's avatar
Philipp Arras committed
116
117
118
119
120
121
122
123
124
125
        self._domain, self._target = op.domain, op.target
        self.apply = op.apply

    @property
    def mean(self):
        return self._mean

    @property
    def std(self):
        return self._sig
Philipp Arras's avatar
Philipp Arras committed
126
127


Philipp Frank's avatar
Philipp Frank committed
128
class _SlopeRemover(EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
129
    def __init__(self, domain, space=0):
Philipp Frank's avatar
Philipp Frank committed
130
        self._domain = makeDomain(domain)
131
132
        assert isinstance(self._domain[space], PowerSpace)
        logkl = _relative_log_k_lengths(self._domain[space])
133
        self._sc = logkl/float(logkl[-1])
Philipp Arras's avatar
Philipp Arras committed
134

135
        self._space = space
Philipp Haim's avatar
Philipp Haim committed
136
137
138
        axis = self._domain.axes[space][0]
        self._last = (slice(None),)*axis + (-1,) + (None,)
        self._extender = (None,)*(axis) + (slice(None),) + (None,)*(self._domain.axes[-1][-1]-axis)
Philipp Frank's avatar
Philipp Frank committed
139
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
140

141
142
    def apply(self, x, mode):
        self._check_input(x, mode)
Philipp Frank's avatar
Philipp Frank committed
143
144
        x = x.to_global_data()
        if mode == self.TIMES:
Philipp Haim's avatar
Philipp Haim committed
145
            res = x - x[self._last]*self._sc[self._extender]
Philipp Frank's avatar
Philipp Frank committed
146
        else:
147
148
            res = x.copy()
            res[self._last] -= (x*self._sc[self._extender]).sum(
Martin Reinecke's avatar
Martin Reinecke committed
149
                    axis=self._space, keepdims=True)
150
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
151

Philipp Arras's avatar
Philipp Arras committed
152
153

class _TwoLogIntegrations(LinearOperator):
Martin Reinecke's avatar
Martin Reinecke committed
154
    def __init__(self, target, space=0):
Philipp Arras's avatar
Philipp Arras committed
155
        self._target = makeDomain(target)
156
157
158
159
160
        assert isinstance(self.target[space], PowerSpace)
        dom = list(self._target)
        dom[space] = UnstructuredDomain((2, self.target[space].shape[0]-2))
        self._domain = makeDomain(dom)
        self._space = space
161
        self._log_vol = _log_vol(self._target[space])
Philipp Arras's avatar
Philipp Arras committed
162
163
164
165
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
166

Martin Reinecke's avatar
Martin Reinecke committed
167
        # Maybe make class properties
168
169
        axis = self._target.axes[self._space][0]
        sl = (slice(None),)*axis
Philipp Haim's avatar
Fixes    
Philipp Haim committed
170
        extender_sl = (None,)*axis + (slice(None),) + (None,)*(self._target.axes[-1][-1] - axis)
171
172
        first = sl + (0,)
        second = sl + (1,)
Martin Reinecke's avatar
Martin Reinecke committed
173
174
175
        from_third = sl + (slice(2, None),)
        no_border = sl + (slice(1, -1),)
        reverse = sl + (slice(None, None, -1),)
176

Philipp Arras's avatar
Philipp Arras committed
177
        if mode == self.TIMES:
Philipp Haim's avatar
Philipp Haim committed
178
            x = x.to_global_data()
Philipp Arras's avatar
Philipp Arras committed
179
            res = np.empty(self._target.shape)
180
            res[first] = res[second] = 0
Martin Reinecke's avatar
Martin Reinecke committed
181
            res[from_third] = np.cumsum(x[second], axis=axis)
182
            res[from_third] = (res[from_third] + res[no_border])/2*self._log_vol[extender_sl] + x[first]
Martin Reinecke's avatar
Martin Reinecke committed
183
            res[from_third] = np.cumsum(res[from_third], axis=axis)
Philipp Arras's avatar
Philipp Arras committed
184
        else:
Philipp Haim's avatar
Philipp Haim committed
185
            x = x.to_global_data_rw()
Philipp Arras's avatar
Philipp Arras committed
186
            res = np.zeros(self._domain.shape)
Martin Reinecke's avatar
Martin Reinecke committed
187
            x[from_third] = np.cumsum(x[from_third][reverse], axis=axis)[reverse]
188
            res[first] += x[from_third]
189
            x[from_third] *= (self._log_vol/2.)[extender_sl]
190
            x[no_border] += x[from_third]
Martin Reinecke's avatar
Martin Reinecke committed
191
            res[second] += np.cumsum(x[from_third][reverse], axis=axis)[reverse]
192
        return from_global_data(self._tgt(mode), res)
Philipp Arras's avatar
Philipp Arras committed
193
194
195


class _Normalization(Operator):
Martin Reinecke's avatar
Martin Reinecke committed
196
    def __init__(self, domain, space=0):
Philipp Arras's avatar
Philipp Arras committed
197
        self._domain = self._target = makeDomain(domain)
198
        assert isinstance(self._domain[space], PowerSpace)
199
200
201
        hspace = list(self._domain)
        hspace[space] = hspace[space].harmonic_partner
        hspace = makeDomain(hspace)
Martin Reinecke's avatar
Martin Reinecke committed
202
        pd = PowerDistributor(hspace, power_space=self._domain[space], space=space)
203
        mode_multiplicity = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
204
        zero_mode = (slice(None),)*self._domain.axes[space][0] + (0,)
Philipp Haim's avatar
Philipp Haim committed
205
        mode_multiplicity[zero_mode] = 0
206
207
        self._mode_multiplicity = from_global_data(self._domain, mode_multiplicity)
        self._specsum = _SpecialSum(self._domain, space)
Philipp Arras's avatar
Philipp Arras committed
208
209
210
211
212
213
214

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
215
        return self._specsum(self._mode_multiplicity*spec)**(-0.5)*amp
Philipp Arras's avatar
Philipp Arras committed
216
217
218


class _SpecialSum(EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
219
    def __init__(self, domain, space=0):
Philipp Arras's avatar
Philipp Arras committed
220
221
        self._domain = makeDomain(domain)
        self._capability = self.TIMES | self.ADJOINT_TIMES
222
        self._contractor = ContractionOperator(domain, space)
Philipp Arras's avatar
Philipp Arras committed
223
224
225

    def apply(self, x, mode):
        self._check_input(x, mode)
226
        return self._contractor.adjoint(self._contractor(x))
Philipp Arras's avatar
Philipp Arras committed
227
228


Philipp Haim's avatar
Philipp Haim committed
229
class _Distributor(LinearOperator):
Martin Reinecke's avatar
Martin Reinecke committed
230
    def __init__(self, dofdex, domain, target, space=0):
Philipp Haim's avatar
Philipp Haim committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        self._dofdex = dofdex

        self._target = makeDomain(target)
        self._domain = makeDomain(domain)
        self._sl = (slice(None),)*space
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        x = x.to_global_data()
        if mode == self.TIMES:
            res = x[self._dofdex]
        else:
            res = np.empty(self._tgt(mode).shape)
            res[self._dofdex] = x
        return from_global_data(self._tgt(mode), res)
Martin Reinecke's avatar
Martin Reinecke committed
247

248

249
250
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
251
                 loglogavgslope, azm, totvol, key, dofdex):
Philipp Arras's avatar
Philipp Arras committed
252
253
254
255
256
257
258
259
260
261
262
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)

Philipp Haim's avatar
Philipp Haim committed
263
264
        if len(dofdex) > 0:
            N_copies = max(dofdex) + 1
Philipp Haim's avatar
Philipp Haim committed
265
            space = 1
Philipp Frank's avatar
cleanup    
Philipp Frank committed
266
267
            distributed_tgt = makeDomain((UnstructuredDomain(len(dofdex)),
                                          target))
Philipp Haim's avatar
Philipp Haim committed
268
269
270
            target = makeDomain((UnstructuredDomain(N_copies), target))
            Distributor = _Distributor(dofdex, target, distributed_tgt, 0)
        else:
Philipp Haim's avatar
Philipp Haim committed
271
            N_copies = 0
Philipp Haim's avatar
Philipp Haim committed
272
            space = 0
Philipp Haim's avatar
Philipp Haim committed
273
            distributed_tgt = target = makeDomain(target)
Martin Reinecke's avatar
Martin Reinecke committed
274
        azm_expander = ContractionOperator(distributed_tgt, spaces=space).adjoint
Philipp Haim's avatar
Philipp Haim committed
275
        assert isinstance(target[space], PowerSpace)
Martin Reinecke's avatar
Martin Reinecke committed
276

277
        twolog = _TwoLogIntegrations(target, space)
Philipp Arras's avatar
Philipp Arras committed
278
        dom = twolog.domain
279

280
        shp = dom[space].shape
Martin Reinecke's avatar
Martin Reinecke committed
281
282
        expander = ContractionOperator(dom, spaces=space).adjoint
        ps_expander = ContractionOperator(twolog.target, spaces=space).adjoint
Philipp Arras's avatar
Philipp Arras committed
283
284
285

        # Prepare constant fields
        foo = np.zeros(shp)
286
287
        foo[0] = foo[1] = np.sqrt(_log_vol(target[space]))
        vflex = DiagonalOperator(from_global_data(dom[space], foo), dom, space)
Philipp Arras's avatar
Philipp Arras committed
288
289
290

        foo = np.zeros(shp, dtype=np.float64)
        foo[0] += 1
291
        vasp = DiagonalOperator(from_global_data(dom[space], foo), dom, space)
Philipp Arras's avatar
Philipp Arras committed
292
293

        foo = np.ones(shp)
294
295
        foo[0] = _log_vol(target[space])**2/12.
        shift = DiagonalOperator(from_global_data(dom[space], foo), dom, space)
Martin Reinecke's avatar
Martin Reinecke committed
296

297
        vslope = DiagonalOperator(
Martin Reinecke's avatar
Martin Reinecke committed
298
299
300
            from_global_data(target[space],
                             _relative_log_k_lengths(target[space])),
            target, space)
301
302

        foo, bar = [np.zeros(target[space].shape) for _ in range(2)]
Philipp Arras's avatar
Philipp Arras committed
303
        bar[1:] = foo[0] = totvol
Martin Reinecke's avatar
Martin Reinecke committed
304
        vol0, vol1 = [DiagonalOperator(from_global_data(target[space], aa),
Philipp Frank's avatar
cleanup    
Philipp Frank committed
305
                                       target, space) for aa in (foo, bar)]
306

Martin Reinecke's avatar
Martin Reinecke committed
307
        # Prepare fields for Adder
308
        shift, vol0 = [op(full(op.domain, 1)) for op in (shift, vol0)]
Philipp Arras's avatar
Philipp Arras committed
309
310
        # End prepare constant fields

311
312
313
314
        slope = vslope @ ps_expander @ loglogavgslope
        sig_flex = vflex @ expander @ flexibility
        sig_asp = vasp @ expander @ asperity
        sig_fluc = vol1 @ ps_expander @ fluctuations
Philipp Haim's avatar
Philipp Haim committed
315
        sig_fluc = vol1 @ ps_expander @ fluctuations
Philipp Arras's avatar
Philipp Arras committed
316
317

        xi = ducktape(dom, None, key)
Philipp Arras's avatar
Philipp Arras committed
318
        sigma = sig_flex*(Adder(shift) @ sig_asp).sqrt()
319
320
        smooth = _SlopeRemover(target, space) @ twolog @ (sigma*xi)
        op = _Normalization(target, space) @ (slope + smooth)
Philipp Haim's avatar
Philipp Haim committed
321
        if N_copies > 0:
Philipp Haim's avatar
Philipp Haim committed
322
323
            op = Distributor @ op
            sig_fluc = Distributor @ sig_fluc
Philipp Haim's avatar
Philipp Haim committed
324
            op = Adder(Distributor(vol0)) @ (sig_fluc*(azm_expander @ azm.one_over())*op)
Martin Reinecke's avatar
Martin Reinecke committed
325
            self._fluc = (_Distributor(dofdex, fluctuations.target, distributed_tgt[0]) @
Philipp Frank's avatar
Philipp Frank committed
326
                          fluctuations)
Philipp Haim's avatar
Philipp Haim committed
327
        else:
Philipp Frank's avatar
cleanup    
Philipp Frank committed
328
            op = Adder(vol0) @ (sig_fluc*(azm_expander @ azm.one_over())*op)
Philipp Frank's avatar
fixup    
Philipp Frank committed
329
            self._fluc = fluctuations
Philipp Arras's avatar
Philipp Arras committed
330

Philipp Arras's avatar
Philipp Arras committed
331
332
        self.apply = op.apply
        self._domain, self._target = op.domain, op.target
333
        self._space = space
Philipp Arras's avatar
Philipp Arras committed
334

Philipp Arras's avatar
Philipp Arras committed
335
336
337
338
    @property
    def fluctuation_amplitude(self):
        return self._fluc

339
340

class CorrelatedFieldMaker:
Philipp Haim's avatar
Philipp Haim committed
341
    def __init__(self, amplitude_offset, prefix, total_N):
Philipp Frank's avatar
fixup    
Philipp Frank committed
342
        assert isinstance(amplitude_offset, Operator)
343
        self._a = []
344
        self._position_spaces = []
Philipp Arras's avatar
Formats    
Philipp Arras committed
345

346
347
        self._azm = amplitude_offset
        self._prefix = prefix
Philipp Haim's avatar
Philipp Haim committed
348
        self._total_N = total_N
Philipp Arras's avatar
Formats    
Philipp Arras committed
349

350
    @staticmethod
Philipp Frank's avatar
Philipp Frank committed
351
    def make(offset_amplitude_mean, offset_amplitude_stddev, prefix,
Martin Reinecke's avatar
Martin Reinecke committed
352
353
             total_N=0,
             dofdex=None):
Philipp Frank's avatar
Philipp Frank committed
354
355
356
357
358
        if dofdex is None:
            dofdex = np.full(total_N, 0)
        else:
            assert len(dofdex) == total_N
        N = max(dofdex) + 1 if total_N > 0 else 0
359
360
        zm = _LognormalMomentMatching(offset_amplitude_mean,
                                      offset_amplitude_stddev,
Philipp Haim's avatar
Philipp Haim committed
361
                                      prefix + 'zeromode',
Philipp Frank's avatar
Philipp Frank committed
362
                                      N)
Philipp Frank's avatar
fixup    
Philipp Frank committed
363
        if total_N > 0:
Martin Reinecke's avatar
Martin Reinecke committed
364
            zm = _Distributor(dofdex, zm.target, UnstructuredDomain(total_N)) @ zm
Philipp Haim's avatar
Philipp Haim committed
365
        return CorrelatedFieldMaker(zm, prefix, total_N)
366
367

    def add_fluctuations(self,
368
                         position_space,
369
370
371
372
373
374
375
376
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
Martin Reinecke's avatar
Martin Reinecke committed
377
378
379
380
                         prefix='',
                         index=None,
                         dofdex=None,
                         harmonic_partner=None):
Philipp Frank's avatar
Philipp Frank committed
381
382
        if harmonic_partner is None:
            harmonic_partner = position_space.get_default_codomain()
Philipp Frank's avatar
Fixup    
Philipp Frank committed
383
384
385
        else:
            position_space.check_codomain(harmonic_partner)
            harmonic_partner.check_codomain(position_space)
386

Philipp Haim's avatar
Philipp Haim committed
387
388
389
390
391
        if dofdex is None:
            dofdex = np.full(self._total_N, 0)
        else:
            assert len(dofdex) == self._total_N

Philipp Haim's avatar
Philipp Haim committed
392
        if self._total_N > 0:
Philipp Haim's avatar
Philipp Haim committed
393
            space = 1
Philipp Haim's avatar
Philipp Haim committed
394
395
            N = max(dofdex) + 1
            position_space = makeDomain((UnstructuredDomain(N), position_space))
Philipp Haim's avatar
Philipp Haim committed
396
397
        else:
            space = 0
Philipp Haim's avatar
Philipp Haim committed
398
            N = 0
Philipp Haim's avatar
Philipp Haim committed
399
            position_space = makeDomain(position_space)
Philipp Arras's avatar
Philipp Arras committed
400
        prefix = str(prefix)
Martin Reinecke's avatar
Martin Reinecke committed
401
        # assert isinstance(position_space[space], (RGSpace, HPSpace, GLSpace)
Philipp Arras's avatar
Philipp Arras committed
402

Philipp Arras's avatar
Philipp Arras committed
403
404
        fluct = _LognormalMomentMatching(fluctuations_mean,
                                         fluctuations_stddev,
405
                                         self._prefix + prefix + 'fluctuations',
Philipp Haim's avatar
Philipp Haim committed
406
                                         N)
Philipp Arras's avatar
Philipp Arras committed
407
        flex = _LognormalMomentMatching(flexibility_mean, flexibility_stddev,
408
                                        self._prefix + prefix + 'flexibility',
Philipp Haim's avatar
Philipp Haim committed
409
                                        N)
Philipp Arras's avatar
Philipp Arras committed
410
        asp = _LognormalMomentMatching(asperity_mean, asperity_stddev,
Martin Reinecke's avatar
Martin Reinecke committed
411
                                       self._prefix + prefix + 'asperity',
Philipp Haim's avatar
Philipp Haim committed
412
                                       N)
413
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
414
                        self._prefix + prefix + 'loglogavgslope', N)
Philipp Frank's avatar
Philipp Frank committed
415
        amp = _Amplitude(PowerSpace(harmonic_partner),
Martin Reinecke's avatar
Martin Reinecke committed
416
                         fluct, flex, asp, avgsl, self._azm,
Philipp Frank's avatar
fixup    
Philipp Frank committed
417
                         position_space[-1].total_volume,
418
                         self._prefix + prefix + 'spectrum', dofdex)
Philipp Haim's avatar
Philipp Haim committed
419

420
421
        if index is not None:
            self._a.insert(index, amp)
422
            self._position_spaces.insert(index, position_space)
423
424
        else:
            self._a.append(amp)
425
            self._position_spaces.append(position_space)
426

Philipp Frank's avatar
fixup    
Philipp Frank committed
427
    def _finalize_from_op(self):
Philipp Haim's avatar
Philipp Haim committed
428
        n_amplitudes = len(self._a)
Philipp Haim's avatar
Philipp Haim committed
429
        if self._total_N > 0:
Philipp Haim's avatar
Philipp Haim committed
430
            hspace = makeDomain([UnstructuredDomain(self._total_N)] +
Martin Reinecke's avatar
Martin Reinecke committed
431
432
                                [dd.target[-1].harmonic_partner
                                    for dd in self._a])
Philipp Haim's avatar
Philipp Haim committed
433
434
            spaces = tuple(range(1, n_amplitudes + 1))
            amp_space = 1
Philipp Haim's avatar
Philipp Haim committed
435
436
        else:
            hspace = makeDomain(
437
                     [dd.target[0].harmonic_partner for dd in self._a])
Philipp Haim's avatar
Philipp Haim committed
438
            spaces = tuple(range(n_amplitudes))
Philipp Haim's avatar
Philipp Haim committed
439
            amp_space = 0
440

Martin Reinecke's avatar
Martin Reinecke committed
441
        expander = ContractionOperator(hspace, spaces=spaces).adjoint
Philipp Frank's avatar
fixup    
Philipp Frank committed
442
        azm = expander @ self._azm
443

444
        ht = HarmonicTransformOperator(hspace,
Philipp Haim's avatar
Philipp Haim committed
445
                                       self._position_spaces[0][amp_space],
Martin Reinecke's avatar
Martin Reinecke committed
446
                                       space=spaces[0])
447
        for i in range(1, n_amplitudes):
448
            ht = (HarmonicTransformOperator(ht.target,
Philipp Haim's avatar
Philipp Haim committed
449
                                            self._position_spaces[i][amp_space],
Martin Reinecke's avatar
Martin Reinecke committed
450
                                            space=spaces[i]) @ ht)
451

Philipp Haim's avatar
Philipp Haim committed
452
        pd = PowerDistributor(hspace, self._a[0].target[amp_space], amp_space)
453
        for i in range(1, n_amplitudes):
Philipp Haim's avatar
Philipp Haim committed
454
            pd = (pd @ PowerDistributor(pd.domain,
Philipp Haim's avatar
Philipp Haim committed
455
                                        self._a[i].target[amp_space],
Martin Reinecke's avatar
Martin Reinecke committed
456
                                        space=spaces[i]))
Philipp Arras's avatar
Philipp Arras committed
457

458
459
        a = ContractionOperator(pd.domain, spaces[1:]).adjoint @ self._a[0]
        for i in range(1, n_amplitudes):
Philipp Haim's avatar
Philipp Haim committed
460
            co = ContractionOperator(pd.domain,
Martin Reinecke's avatar
Martin Reinecke committed
461
                                     spaces[:i] + spaces[i+1:])
462
            a = a*(co.adjoint @ self._a[i])
Philipp Arras's avatar
Philipp Arras committed
463

Philipp Frank's avatar
fixup    
Philipp Frank committed
464
        return ht(azm*(pd @ a)*ducktape(hspace, None, self._prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
465

Philipp Arras's avatar
Formats    
Philipp Arras committed
466
    def finalize(self, offset=None, prior_info=100):
Philipp Arras's avatar
Philipp Arras committed
467
468
469
470
        """
        offset vs zeromode: volume factor
        """
        if offset is not None:
471
            raise NotImplementedError
Philipp Arras's avatar
Philipp Arras committed
472
            offset = float(offset)
473

Philipp Frank's avatar
fixup    
Philipp Frank committed
474
        op = self._finalize_from_op()
475
476
477
478
479
480
481
482
483
484
485
486
        if prior_info > 0:
            from ..sugar import from_random
            samps = [
                from_random('normal', op.domain) for _ in range(prior_info)
            ]
            self.statistics_summary(samps)
        return op

    def statistics_summary(self, samples):
        lst = [('Offset amplitude', self.amplitude_total_offset),
               ('Total fluctuation amplitude', self.total_fluctuation)]

487
        namps = len(self._a)
488
489
490
491
492
493
494
495
496
        if namps > 1:
            for ii in range(namps):
                lst.append(('Slice fluctuation (space {})'.format(ii),
                            self.slice_fluctuation(ii)))
                lst.append(('Average fluctuation (space {})'.format(ii),
                            self.average_fluctuation(ii)))

        for kk, op in lst:
            mean, stddev = _stats(op, samples)
497
498
            for m, s in zip(mean.flatten(), stddev.flatten()):
                print('{}: {:.02E} ± {:.02E}'.format(kk, m, s))
499
500
501
502

    def moment_slice_to_average(self, fluctuations_slice_mean, nsamples=1000):
        fluctuations_slice_mean = float(fluctuations_slice_mean)
        assert fluctuations_slice_mean > 0
503
        from ..sugar import from_random
504
505
        scm = 1.
        for a in self._a:
Philipp Haim's avatar
Philipp Haim committed
506
            op = a.fluctuation_amplitude*self._azm.one_over()
Martin Reinecke's avatar
Martin Reinecke committed
507
            res = np.array([op(from_random('normal', op.domain)).to_global_data()
508
509
                            for _ in range(nsamples)])
            scm *= res**2 + 1.
510
        return fluctuations_slice_mean/np.mean(np.sqrt(scm))
511

Philipp Arras's avatar
Philipp Arras committed
512
    @property
Philipp Haim's avatar
Philipp Haim committed
513
    def normalized_amplitudes(self):
514
        return self._a
Philipp Arras's avatar
Philipp Arras committed
515

Philipp Haim's avatar
Philipp Haim committed
516
517
518
519
520
521
522
    @property
    def amplitude(self):
        if len(self._a) > 1:
            s = ('If more than one spectrum is present in the model,',
                 ' no unique set of amplitudes exist because only the',
                 ' relative scale is determined.')
            raise NotImplementedError(s)
Philipp Haim's avatar
Philipp Haim committed
523
        expand = ContractionOperator(self._a[0].target, 1).adjoint
Philipp Haim's avatar
Philipp Haim committed
524
525
        return self._a[0]*(expand @ self.amplitude_total_offset)

526
527
528
    @property
    def amplitude_total_offset(self):
        return self._azm
Philipp Arras's avatar
Philipp Arras committed
529
530

    @property
531
    def total_fluctuation(self):
532
        """Returns operator which acts on prior or posterior samples"""
533
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
534
            raise NotImplementedError
535
        if len(self._a) == 1:
536
            return self.average_fluctuation(0)
537
538
        q = 1.
        for a in self._a:
Philipp Haim's avatar
Philipp Haim committed
539
            fl = a.fluctuation_amplitude*self._azm.one_over()
Philipp Arras's avatar
Philipp Arras committed
540
            q = q*(Adder(full(fl.target, 1.)) @ fl**2)
Philipp Arras's avatar
Formats    
Philipp Arras committed
541
        return (Adder(full(q.target, -1.)) @ q).sqrt()*self._azm
542

Philipp Arras's avatar
Philipp Arras committed
543
    def slice_fluctuation(self, space):
544
        """Returns operator which acts on prior or posterior samples"""
545
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
546
            raise NotImplementedError
547
548
        assert space < len(self._a)
        if len(self._a) == 1:
549
            return self.average_fluctuation(0)
550
551
        q = 1.
        for j in range(len(self._a)):
Philipp Haim's avatar
Philipp Haim committed
552
            fl = self._a[j].fluctuation_amplitude*self._azm.one_over()
553
            if j == space:
Philipp Arras's avatar
Philipp Arras committed
554
                q = q*fl**2
555
            else:
Philipp Arras's avatar
Philipp Arras committed
556
                q = q*(Adder(full(fl.target, 1.)) @ fl**2)
Philipp Arras's avatar
Formats    
Philipp Arras committed
557
        return q.sqrt()*self._azm
Philipp Arras's avatar
Philipp Arras committed
558
559

    def average_fluctuation(self, space):
560
        """Returns operator which acts on prior or posterior samples"""
561
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
562
            raise NotImplementedError
563
564
        assert space < len(self._a)
        if len(self._a) == 1:
Philipp Haim's avatar
Philipp Haim committed
565
566
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude
567

568
569
    @staticmethod
    def offset_amplitude_realized(samples):
570
571
        res = 0.
        for s in samples:
Philipp Frank's avatar
fixes    
Philipp Frank committed
572
            res = res + s.mean()**2
573
        return np.sqrt(res/len(samples))
Philipp Arras's avatar
Philipp Arras committed
574

575
576
577
578
579
580
581
582
    @staticmethod
    def total_fluctuation_realized(samples):
        return _total_fluctuation_realized(samples)

    @staticmethod
    def slice_fluctuation_realized(samples, space):
        """Computes slice fluctuations from collection of field (defined in signal
        space) realizations."""
583
584
585
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
586
            return _total_fluctuation_realized(samples)
Philipp Arras's avatar
Philipp Arras committed
587
        res1, res2 = 0., 0.
588
        for s in samples:
Philipp Frank's avatar
fixes    
Philipp Frank committed
589
590
591
592
593
594
595
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
        res = res1.mean() - res2.mean()
        return np.sqrt(res)

Philipp Arras's avatar
Philipp Arras committed
596
    @staticmethod
597
598
599
600
601
602
603
604
605
606
607
    def average_fluctuation_realized(samples, space):
        """Computes average fluctuations from collection of field (defined in signal
        space) realizations."""
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return _total_fluctuation_realized(samples)
        spaces = ()
        for i in range(ldom):
            if i != space:
                spaces += (i,)
Philipp Arras's avatar
Philipp Arras committed
608
609
        res = 0.
        for s in samples:
610
611
612
613
            r = s.mean(spaces)
            res = res + (r - r.mean())**2
        res = res/len(samples)
        return np.sqrt(res.mean())