nifty_mpi_data.py 74.9 KB
Newer Older
ultimanet's avatar
ultimanet committed
1
# -*- coding: utf-8 -*-
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2015 Max-Planck-Society
##
## Author: Theo Steininger
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.


ultimanet's avatar
ultimanet committed
24
25


26

27
##initialize the 'found-packages'-dictionary 
28
found = {}
ultimanet's avatar
ultimanet committed
29
import numpy as np
Ultimanet's avatar
Ultimanet committed
30
from nifty_about import about
ultimanet's avatar
ultimanet committed
31
32

try:
33
    from mpi4py import MPI
ultimanet's avatar
ultimanet committed
34
35
    found[MPI] = True
except(ImportError): 
36
    import mpi_dummy as MPI
ultimanet's avatar
ultimanet committed
37
38
39
40
41
42
43
44
45
    found[MPI] = False

try:
    import pyfftw
    found['pyfftw'] = True
except(ImportError):       
    found['pyfftw'] = False

try:
46
    import h5py
ultimanet's avatar
ultimanet committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    found['h5py'] = True
    found['h5py_parallel'] = h5py.get_config().mpi
except(ImportError):
    found['h5py'] = False
    found['h5py_parallel'] = False


class distributed_data_object(object):
    """

        NIFTY class for distributed data

        Parameters
        ----------
        global_data : {tuple, list, numpy.ndarray} *at least 1-dimensional*
            Initial data which will be casted to a numpy.ndarray and then 
            stored according to the distribution strategy. The global_data's
            shape overwrites global_shape.
        global_shape : tuple of ints, *optional*
            If no global_data is supplied, global_shape can be used to
            initialize an empty distributed_data_object
        dtype : type, *optional*
            If an explicit dtype is supplied, the given global_data will be 
            casted to it.            
        distribution_strategy : {'fftw' (default), 'not'}, *optional*
            Specifies the way, how global_data will be distributed to the 
            individual nodes. 
            'fftw' follows the distribution strategy of pyfftw.
            'not' does not distribute the data at all. 
            

        Attributes
        ----------
        data : numpy.ndarray
            The numpy.ndarray in which the individual node's data is stored.
        dtype : type
            Data type of the data object.
        distribution_strategy : string
            Name of the used distribution_strategy
        distributor : distributor
            The distributor object which takes care of all distribution and 
            consolidation of the data. 
        shape : tuple of int
            The global shape of the data
            
        Raises
        ------
        TypeError : 
            If the supplied distribution strategy is not known. 
        
    """
98
99
100
    def __init__(self, global_data = None, global_shape=None, dtype=None, 
                 distribution_strategy='fftw', hermitian=False,
                 alias=None, path=None, comm = MPI.COMM_WORLD, 
Ultimanet's avatar
Ultimanet committed
101
                 *args, **kwargs):
102
103
104
105
106
107
108
109
        
        ## a given hdf5 file overwrites the other parameters
        if found['h5py'] == True and alias is not None:
            ## set file path            
            file_path = path if (path is not None) else alias 
            ## open hdf5 file
            if found['h5py_parallel'] == True and found['MPI'] == True:
                f = h5py.File(file_path, 'r', driver='mpio', comm=comm)
110
            else:
111
112
113
114
115
116
117
                f= h5py.File(file_path, 'r')        
            ## open alias in file
            dset = f[alias] 
            ## set shape 
            global_shape = dset.shape
            ## set dtype
            dtype = dset.dtype.type
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        ## if no hdf5 path was given, extract global_shape and dtype from 
        ## the remaining arguments
        else:        
            ## an explicitly given dtype overwrites the one from global_data
            if dtype is None:
                if global_data is None:
                    raise ValueError(about._errors.cstring(
                        "ERROR: Neither global_data nor dtype supplied!"))      
                try:
                    dtype = global_data.dtype.type
                except(AttributeError):
                    try:
                        dtype = global_data.dtype
                    except(AttributeError):
                        dtype = np.array(global_data).dtype.type
            else:
                dtype = dtype
            
            ## an explicitly given global_shape argument is only used if 
            ## 1. no global_data was supplied, or 
            ## 2. global_data is a scalar/list of dimension 0.
            if global_shape is None:
                if global_data is None or np.isscalar(global_data):
                    raise ValueError(about._errors.cstring(
    "ERROR: Neither non-0-dimensional global_data nor global_shape supplied!"))      
                global_shape = global_data.shape
            else:
                if global_data is None or np.isscalar(global_data):
                    global_shape = tuple(global_shape)
                else:
                    global_shape = global_data.shape
Ultimanet's avatar
Ultimanet committed
150

Ultimanet's avatar
Ultimanet committed
151

152
153
154
155
156
157
        self.distributor = distributor_factory.get_distributor(
                                distribution_strategy = distribution_strategy,
                                global_shape = global_shape,
                                dtype = dtype,
                                **kwargs)
                                
ultimanet's avatar
ultimanet committed
158
159
160
161
        self.distribution_strategy = distribution_strategy
        self.dtype = self.distributor.dtype
        self.shape = self.distributor.global_shape
        
162
163
        self.init_args = args 
        self.init_kwargs = kwargs
164
165
166
167
168
169
170
171


        ## If a hdf5 path was given, load the data
        if found['h5py'] == True and alias is not None:
            self.load(alias = alias, path = path)
            ## close the file handle
            f.close()
            
172
        ## If the input data was a scalar, set the whole array to this value
173
        elif global_data != None and np.isscalar(global_data):
Ultimanet's avatar
Ultimanet committed
174
175
176
            temp = np.empty(self.distributor.local_shape)
            temp.fill(global_data)
            self.set_local_data(temp)
177
            self.hermitian = True
178
179
180
181
182
183
        else:
            self.set_full_data(data=global_data, hermitian=hermitian, 
                           **kwargs)

            self.hermitian = hermitian
            
Ultimanet's avatar
Ultimanet committed
184
185
186
187
188
189
190
191
192
    def copy(self, dtype=None, distribution_strategy=None, **kwargs):
        temp_d2o = self.copy_empty(dtype=dtype, 
                                   distribution_strategy=distribution_strategy, 
                                   **kwargs)     
        if distribution_strategy == None or \
            distribution_strategy == self.distribution_strategy:
            temp_d2o.set_local_data(self.get_local_data(), copy=True)
        else:
            temp_d2o.set_full_data(self.get_full_data())
193
        temp_d2o.hermitian = self.hermitian
194
195
        return temp_d2o
    
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    def copy_empty(self, global_shape=None, dtype=None, 
                   distribution_strategy=None, **kwargs):
        if global_shape == None:
            global_shape = self.shape
        if dtype == None:
            dtype = self.dtype
        if distribution_strategy == None:
            distribution_strategy = self.distribution_strategy

        kwargs.update(self.init_kwargs)
        
        temp_d2o = distributed_data_object(global_shape=global_shape,
                                           dtype=dtype,
                                           distribution_strategy=distribution_strategy,
210
                                           *self.init_args,
211
                                           **kwargs)
212
213
        return temp_d2o
    
214
    def apply_scalar_function(self, function, inplace=False, dtype=None):
215
216
        remember_hermitianQ = self.hermitian
        
Ultimanet's avatar
Ultimanet committed
217
218
        if inplace == True:        
            temp = self
219
220
221
222
            if dtype != None and self.dtype != dtype:
                about.warnings.cprint(\
            "WARNING: Inplace dtype conversion is not possible!")
                
Ultimanet's avatar
Ultimanet committed
223
        else:
224
            temp = self.copy_empty(dtype=dtype)
Ultimanet's avatar
Ultimanet committed
225
226
227
228
229

        try: 
            temp.data[:] = function(self.data)
        except:
            temp.data[:] = np.vectorize(function)(self.data)
230
        
231
232
233
234
        if function in (np.exp, np.log):
            temp.hermitian = remember_hermitianQ
        else:
            temp.hermitian = False
Ultimanet's avatar
Ultimanet committed
235
236
237
238
239
240
        return temp
    
    def apply_generator(self, generator):
        self.set_local_data(generator(self.distributor.local_shape))
        self.hermitian = False
            
ultimanet's avatar
ultimanet committed
241
242
243
244
245
246
    def __str__(self):
        return self.data.__str__()
    
    def __repr__(self):
        return '<distributed_data_object>\n'+self.data.__repr__()
    
Ultimanet's avatar
Ultimanet committed
247
    def __eq__(self, other):
Ultimanet's avatar
Ultimanet committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        result = self.copy_empty(dtype = np.bool)
        ## Case 1: 'other' is a scalar
        ## -> make point-wise comparison
        if np.isscalar(other):
            result.set_local_data(self.get_local_data(copy = False) == other)
            return result        

        ## Case 2: 'other' is a numpy array or a distributed_data_object
        ## -> extract the local data and make point-wise comparison
        elif isinstance(other, np.ndarray) or\
        isinstance(other, distributed_data_object):
            temp_data = self.distributor.extract_local_data(other)
            result.set_local_data(self.get_local_data(copy=False) == temp_data)
            return result
        
        ## Case 3: 'other' is None
        elif other == None:
            return False
        
        ## Case 4: 'other' is something different
268
        ## -> make a numpy casting and make a recursive call
Ultimanet's avatar
Ultimanet committed
269
270
271
272
273
274
275
276
        else:
            temp_other = np.array(other)
            return self.__eq__(temp_other)
            
            
        
    
    def equal(self, other):
Ultimanet's avatar
Ultimanet committed
277
278
279
280
281
282
283
284
285
        if other is None:
            return False
        try:
            assert(self.dtype == other.dtype)
            assert(self.shape == other.shape)
            assert(self.init_args == other.init_args)
            assert(self.init_kwargs == other.init_kwargs)
            assert(self.distribution_strategy == other.distribution_strategy)
            assert(np.all(self.data == other.data))
Ultimanet's avatar
Ultimanet committed
286
        except(AssertionError, AttributeError):
Ultimanet's avatar
Ultimanet committed
287
288
289
290
291
292
293
            return False
        else:
            return True
        

            
    
294
    def __pos__(self):
295
        temp_d2o = self.copy_empty()
296
297
298
        temp_d2o.set_local_data(data = self.get_local_data())
        return temp_d2o
        
ultimanet's avatar
ultimanet committed
299
    def __neg__(self):
300
        temp_d2o = self.copy_empty()
ultimanet's avatar
ultimanet committed
301
302
303
        temp_d2o.set_local_data(data = self.get_local_data().__neg__()) 
        return temp_d2o
    
304
    def __abs__(self):
Ultimanet's avatar
Ultimanet committed
305
306
307
308
309
310
311
312
313
314
315
316
        ## translate complex dtypes
        if self.dtype == np.complex64:
            new_dtype = np.float32
        elif self.dtype == np.complex128:
            new_dtype = np.float64
        elif self.dtype == np.complex:
            new_dtype = np.float
        elif issubclass(self.dtype, np.complexfloating):
            new_dtype = np.float
        else:
            new_dtype = self.dtype
        temp_d2o = self.copy_empty(dtype = new_dtype)
317
318
        temp_d2o.set_local_data(data = self.get_local_data().__abs__()) 
        return temp_d2o
ultimanet's avatar
ultimanet committed
319
            
320
    def __builtin_helper__(self, operator, other, inplace=False):
Ultimanet's avatar
Ultimanet committed
321
322
323
324
325
        ## Case 1: other is not a scalar
        if not (np.isscalar(other) or np.shape(other) == (1,)):
##            if self.shape != other.shape:            
##                raise AttributeError(about._errors.cstring(
##                    "ERROR: Shapes do not match!")) 
326
327
328
329
            try:            
                hermitian_Q = other.hermitian
            except(AttributeError):
                hermitian_Q = False
Ultimanet's avatar
Ultimanet committed
330
331
332
            ## extract the local data from the 'other' object
            temp_data = self.distributor.extract_local_data(other)
            temp_data = operator(temp_data)
Ultimanet's avatar
Ultimanet committed
333
            
334
335
336
337
        ## Case 2: other is a real scalar -> preserve hermitianity
        elif np.isreal(other) or (self.dtype not in (np.complex, np.complex128,
                                                np.complex256)):
            hermitian_Q = self.hermitian
ultimanet's avatar
ultimanet committed
338
            temp_data = operator(other)
339
340
341
342
        ## Case 3: other is complex
        else:
            hermitian_Q = False
            temp_data = operator(other)        
Ultimanet's avatar
Ultimanet committed
343
        ## write the new data into a new distributed_data_object        
344
345
346
347
        if inplace == True:
            temp_d2o = self
        else:
            temp_d2o = self.copy_empty()        
ultimanet's avatar
ultimanet committed
348
        temp_d2o.set_local_data(data=temp_data)
349
        temp_d2o.hermitian = hermitian_Q
ultimanet's avatar
ultimanet committed
350
        return temp_d2o
351
    """
Ultimanet's avatar
Ultimanet committed
352
    def __inplace_builtin_helper__(self, operator, other):
353
        ## Case 1: other is not a scalar
Ultimanet's avatar
Ultimanet committed
354
355
356
        if not (np.isscalar(other) or np.shape(other) == (1,)):        
            temp_data = self.distributor.extract_local_data(other)
            temp_data = operator(temp_data)
357
358
359
        ## Case 2: other is a real scalar -> preserve hermitianity
        elif np.isreal(other):
            hermitian_Q = self.hermitian
Ultimanet's avatar
Ultimanet committed
360
            temp_data = operator(other)
361
362
363
        ## Case 3: other is complex
        else:
            temp_data = operator(other)        
Ultimanet's avatar
Ultimanet committed
364
        self.set_local_data(data=temp_data)
365
        self.hermitian = hermitian_Q
Ultimanet's avatar
Ultimanet committed
366
        return self
367
    """ 
Ultimanet's avatar
Ultimanet committed
368
    
ultimanet's avatar
ultimanet committed
369
370
371
372
373
    def __add__(self, other):
        return self.__builtin_helper__(self.get_local_data().__add__, other)

    def __radd__(self, other):
        return self.__builtin_helper__(self.get_local_data().__radd__, other)
Ultimanet's avatar
Ultimanet committed
374
375

    def __iadd__(self, other):
376
377
378
        return self.__builtin_helper__(self.get_local_data().__iadd__, 
                                               other,
                                               inplace = True)
Ultimanet's avatar
Ultimanet committed
379

ultimanet's avatar
ultimanet committed
380
381
382
383
384
385
386
    def __sub__(self, other):
        return self.__builtin_helper__(self.get_local_data().__sub__, other)
    
    def __rsub__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rsub__, other)
    
    def __isub__(self, other):
387
388
389
        return self.__builtin_helper__(self.get_local_data().__isub__, 
                                               other,
                                               inplace = True)
ultimanet's avatar
ultimanet committed
390
391
392
393
        
    def __div__(self, other):
        return self.__builtin_helper__(self.get_local_data().__div__, other)
    
394
395
396
    def __truediv__(self, other):
        return self.__div__(other)
        
ultimanet's avatar
ultimanet committed
397
398
    def __rdiv__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rdiv__, other)
399
400
401
    
    def __rtruediv__(self, other):
        return self.__rdiv__(other)
ultimanet's avatar
ultimanet committed
402

Ultimanet's avatar
Ultimanet committed
403
    def __idiv__(self, other):
404
405
406
        return self.__builtin_helper__(self.get_local_data().__idiv__, 
                                               other,
                                               inplace = True)
407
408
409
    def __itruediv(self, other):
        return self.__idiv__(other)
                                               
ultimanet's avatar
ultimanet committed
410
    def __floordiv__(self, other):
Ultimanet's avatar
Ultimanet committed
411
412
        return self.__builtin_helper__(self.get_local_data().__floordiv__, 
                                       other)    
ultimanet's avatar
ultimanet committed
413
    def __rfloordiv__(self, other):
Ultimanet's avatar
Ultimanet committed
414
415
416
        return self.__builtin_helper__(self.get_local_data().__rfloordiv__, 
                                       other)
    def __ifloordiv__(self, other):
417
418
419
        return self.__builtin_helper__(
                    self.get_local_data().__ifloordiv__, other,
                                               inplace = True)
ultimanet's avatar
ultimanet committed
420
421
422
423
424
425
426
427
    
    def __mul__(self, other):
        return self.__builtin_helper__(self.get_local_data().__mul__, other)
    
    def __rmul__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rmul__, other)

    def __imul__(self, other):
428
429
430
        return self.__builtin_helper__(self.get_local_data().__imul__, 
                                               other,
                                               inplace = True)
Ultimanet's avatar
Ultimanet committed
431

ultimanet's avatar
ultimanet committed
432
433
434
435
436
437
438
    def __pow__(self, other):
        return self.__builtin_helper__(self.get_local_data().__pow__, other)
 
    def __rpow__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rpow__, other)

    def __ipow__(self, other):
439
440
441
        return self.___builtin_helper__(self.get_local_data().__ipow__, 
                                               other,
                                               inplace = True)
Ultimanet's avatar
Ultimanet committed
442
   
443
444
    def __len__(self):
        return self.shape[0]
445
    
446
447
448
    def dim(self):
        return np.prod(self.shape)
        
449
450
451
452
453
454
455
456
    def vdot(self, other):
        if isinstance(other, distributed_data_object):        
            other = other.get_local_data()
        local_vdot = np.vdot(self.get_local_data(), other)
        local_vdot_list = self.distributor._allgather(local_vdot)
        global_vdot = np.sum(local_vdot_list)
        return global_vdot
            
Ultimanet's avatar
Ultimanet committed
457

458
    
ultimanet's avatar
ultimanet committed
459
    def __getitem__(self, key):
Ultimanet's avatar
Ultimanet committed
460
461
462
463
464
465
466
467
468
469
470
        ## Case 1: key is a boolean array.
        ## -> take the local data portion from key, use this for data 
        ## extraction, and then merge the result in a flat numpy array
        if isinstance(key, np.ndarray):
            found = 'ndarray'
            found_boolean = (key.dtype.type == np.bool)
        elif isinstance(key, distributed_data_object):
            found = 'd2o'
            found_boolean = (key.dtype == np.bool)
        else:
            found = 'other'
Ultima's avatar
Ultima committed
471
        ## TODO: transfer this into distributor:
Ultimanet's avatar
Ultimanet committed
472
473
474
475
476
477
478
479
480
481
        if (found == 'ndarray' or found == 'd2o') and found_boolean == True:
            ## extract the data of local relevance
            local_bool_array = self.distributor.extract_local_data(key)
            local_results = self.get_local_data(copy=False)[local_bool_array]
            global_results = self.distributor._allgather(local_results)
            global_results = np.concatenate(global_results)
            return global_results            
            
        else:
            return self.get_data(key)
ultimanet's avatar
ultimanet committed
482
483
484
485
    
    def __setitem__(self, key, data):
        self.set_data(data, key)
        
486
    def _contraction_helper(self, function, **kwargs):
487
488
489
490
491
492
        local = function(self.data, **kwargs)
        local_list = self.distributor._allgather(local)
        global_ = function(local_list, axis=0)
        return global_
        
    def amin(self, **kwargs):
493
        return self._contraction_helper(np.amin, **kwargs)
494
495

    def nanmin(self, **kwargs):
496
        return self._contraction_helper(np.nanmin, **kwargs)
497
498
        
    def amax(self, **kwargs):
499
        return self._contraction_helper(np.amax, **kwargs)
500
501
    
    def nanmax(self, **kwargs):
502
        return self._contraction_helper(np.nanmax, **kwargs)
Ultimanet's avatar
Ultimanet committed
503
    
504
505
506
507
508
509
    def sum(self, **kwargs):
        return self._contraction_helper(np.sum, **kwargs)

    def prod(self, **kwargs):
        return self._contraction_helper(np.prod, **kwargs)        
        
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    def mean(self, power=1):
        ## compute the local means and the weights for the mean-mean. 
        local_mean = np.mean(self.data**power)
        local_weight = np.prod(self.data.shape)
        ## collect the local means and cast the result to a ndarray
        local_mean_weight_list = self.distributor._allgather((local_mean, 
                                                              local_weight))
        local_mean_weight_list =np.array(local_mean_weight_list)   
        ## compute the denominator for the weighted mean-mean                                                           
        global_weight = np.sum(local_mean_weight_list[:,1])
        ## compute the numerator
        numerator = np.sum(local_mean_weight_list[:,0]*\
            local_mean_weight_list[:,1])
        global_mean = numerator/global_weight
        return global_mean

    def var(self):
        mean_of_the_square = self.mean(power=2)
        square_of_the_mean = self.mean()**2
        return mean_of_the_square - square_of_the_mean
    
    def std(self):
        return np.sqrt(self.var())
        
    def _argmin_argmax_flat_helper(self, function):
        local_argmin = function(self.data)
        local_argmin_value = self.data[np.unravel_index(local_argmin, 
                                                        self.data.shape)]
        globalized_local_argmin = self.distributor.globalize_flat_index(local_argmin)                                                       
        local_argmin_list = self.distributor._allgather((local_argmin_value, 
                                                         globalized_local_argmin))
        local_argmin_list = np.array(local_argmin_list, dtype=[('value', int),
                                                               ('index', int)])    
        return local_argmin_list
        
    def argmin_flat(self):
        local_argmin = np.argmin(self.data)
        local_argmin_value = self.data[np.unravel_index(local_argmin, 
                                                        self.data.shape)]
        globalized_local_argmin = self.distributor.globalize_flat_index(local_argmin)                                                       
        local_argmin_list = self.distributor._allgather((local_argmin_value, 
                                                         globalized_local_argmin))
        local_argmin_list = np.array(local_argmin_list, dtype=[('value', int),
                                                               ('index', int)])    
        local_argmin_list = np.sort(local_argmin_list, order=['value', 'index'])        
        return local_argmin_list[0][1]
    
    def argmax_flat(self):
        local_argmax = np.argmax(self.data)
        local_argmax_value = -self.data[np.unravel_index(local_argmax, 
                                                        self.data.shape)]
        globalized_local_argmax = self.distributor.globalize_flat_index(local_argmax)                                                       
        local_argmax_list = self.distributor._allgather((local_argmax_value, 
                                                         globalized_local_argmax))
        local_argmax_list = np.array(local_argmax_list, dtype=[('value', int),
                                                               ('index', int)])         
        return local_argmax_list[0][1]
        

    def argmin(self):    
        return np.unravel_index(self.argmin_flat(), self.shape)
    
    def argmax(self):
        return np.unravel_index(self.argmax_flat(), self.shape)
    
    def conjugate(self):
        temp_d2o = self.copy_empty()
        temp_data = np.conj(self.get_local_data())
        temp_d2o.set_local_data(temp_data)
        return temp_d2o

    
    def conj(self):
        return self.conjugate()      
        
    def median(self):
Ultimanet's avatar
Ultimanet committed
586
        about.warnings.cprint(\
587
588
589
590
            "WARNING: The current implementation of median is very expensive!")
        median = np.median(self.get_full_data())
        return median
        
591
592
593
594
595
596
597
598
599
600
601
    def iscomplex(self):
        temp_d2o = self.copy_empty(dtype=bool)
        temp_d2o.set_local_data(np.iscomplex(self.data))
        return temp_d2o
    
    def isreal(self):
        temp_d2o = self.copy_empty(dtype=bool)
        temp_d2o.set_local_data(np.isreal(self.data))
        return temp_d2o
    
    def is_completely_real(self):
602
        local_realiness = np.all(self.isreal().get_local_data())
603
604
605
        global_realiness = self.distributor._allgather(local_realiness)
        return np.all(global_realiness)
    
606
607
608
609
610
611
612
613
614
615
616
617
    def all(self):
        local_all = np.all(self.get_local_data())
        global_all = self.distributor._allgather(local_all)
        return np.all(global_all)

    def any(self):
        local_any = np.any(self.get_local_data())
        global_any = self.distributor._allgather(local_any)
        return np.all(global_any)
        
    
    
Ultimanet's avatar
Ultimanet committed
618
    def set_local_data(self, data, hermitian=False, copy=False):
ultimanet's avatar
ultimanet committed
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
        """
            Stores data directly in the local data attribute. No distribution 
            is done. The shape of the data must fit the local data attributes
            shape.

            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be stored in the local data attribute.
            
            Returns
            -------
            None
        
        """
Ultimanet's avatar
Ultimanet committed
634
635
        self.hermitian = hermitian
        self.data = np.array(data, dtype=self.dtype, copy=copy, order='C')
ultimanet's avatar
ultimanet committed
636
    
Ultimanet's avatar
Ultimanet committed
637
    def set_data(self, data, key, hermitian=False, *args, **kwargs):
ultimanet's avatar
ultimanet committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
        """
            Stores the supplied data in the region which is specified by key. 
            The data is distributed according to the distribution strategy. If
            the individual nodes get different key-arguments. Their data is 
            processed one-by-one.
            
            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be distributed.
            key : int, slice, tuple of int or slice
                The key is the object which specifies the region, where data 
                will be stored in.                
            
            Returns
            -------
            None
        
        """
Ultimanet's avatar
Ultimanet committed
657
        self.hermitian = hermitian
ultimanet's avatar
ultimanet committed
658
        (slices, sliceified) = self.__sliceify__(key)        
Ultimanet's avatar
Ultimanet committed
659
660
661
662
        self.distributor.disperse_data(data=self.data, 
                        to_slices = slices,
                        data_update = self.__enfold__(data, sliceified), 
                        *args, **kwargs)        
ultimanet's avatar
ultimanet committed
663
    
Ultimanet's avatar
Ultimanet committed
664
    def set_full_data(self, data, hermitian=False, **kwargs):
ultimanet's avatar
ultimanet committed
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
        """
            Distributes the supplied data to the nodes. The shape of data must 
            match the shape of the distributed_data_object.
            
            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be distributed.
            
            Notes
            -----
            set_full_data(foo) is equivalent to set_data(foo,slice(None)) but 
            faster.
        
            Returns
            -------
            None
        
        """
Ultimanet's avatar
Ultimanet committed
684
        self.hermitian = hermitian
685
        self.data = self.distributor.distribute_data(data=data, **kwargs)
ultimanet's avatar
ultimanet committed
686
687
    

Ultimanet's avatar
Ultimanet committed
688
    def get_local_data(self, key=(slice(None),), copy=True):
ultimanet's avatar
ultimanet committed
689
690
691
692
693
694
695
696
697
698
699
700
701
        """
            Loads data directly from the local data attribute. No consolidation 
            is done. 

            Parameters
            ----------
            key : int, slice, tuple of int or slice
                The key which will be used to access the data. 
            
            Returns
            -------
            self.data[key] : numpy.ndarray
        
Ultimanet's avatar
Ultimanet committed
702
        """
Ultimanet's avatar
Ultimanet committed
703
704
705
706
        if copy == True:
            return self.data[key]        
        if copy == False:
            return self.data
ultimanet's avatar
ultimanet committed
707
        
708
    def get_data(self, key, **kwargs):
ultimanet's avatar
ultimanet committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
        """
            Loads data from the region which is specified by key. The data is 
            consolidated according to the distribution strategy. If the 
            individual nodes get different key-arguments, they get individual
            data. 
            
            Parameters
            ----------
        
            key : int, slice, tuple of int or slice
                The key is the object which specifies the region, where data 
                will be loaded from.                 
            
            Returns
            -------
            global_data[key] : numpy.ndarray
        
        """
727
728
        (slices, sliceified) = self.__sliceify__(key)
        result = self.distributor.collect_data(self.data, slices, **kwargs)        
ultimanet's avatar
ultimanet committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
        return self.__defold__(result, sliceified)
        
    
    
    def get_full_data(self, target_rank='all'):
        """
            Fully consolidates the distributed data. 
            
            Parameters
            ----------
            target_rank : 'all' (default), int *optional*
                If only one node should recieve the full data, it can be 
                specified here.
            
            Notes
            -----
            get_full_data() is equivalent to get_data(slice(None)) but 
            faster.
        
            Returns
            -------
            None
        """

753
754
        return self.distributor.consolidate_data(self.data, 
                                                 target_rank = target_rank)
ultimanet's avatar
ultimanet committed
755

Ultimanet's avatar
Ultimanet committed
756
757
758
759
760
761
762
    def inject(self, to_slices=(slice(None),), data=None, 
               from_slices=(slice(None),)):
        if data == None:
            return self
        
        self.distributor.inject(self.data, to_slices, data, from_slices)
        
763
764
765
766
767
768
769
770
771
772
773
    def flatten(self, inplace = False):
        flat_shape = (np.prod(self.shape),)
        temp_d2o = self.copy_empty(global_shape = flat_shape)
        flat_data = self.distributor.flatten(self.data, inplace = inplace)
        temp_d2o.set_local_data(data = flat_data)
        if inplace == True:
            self = temp_d2o
            return self
        else:
            return temp_d2o
        
Ultimanet's avatar
Ultimanet committed
774
        
775

ultimanet's avatar
ultimanet committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
      
    def save(self, alias, path=None, overwriteQ=True):
        
        """
            Saves a distributed_data_object to disk utilizing h5py.
            
            Parameters
            ----------
            alias : string
                The name for the dataset which is saved within the hdf5 file.
         
            path : string *optional*
                The path to the hdf5 file. If no path is given, the alias is 
                taken as filename in the current path.
            
            overwriteQ : Boolean *optional*
                Specifies whether a dataset may be overwritten if it is already
                present in the given hdf5 file or not.
        """
        self.distributor.save_data(self.data, alias, path, overwriteQ)

    def load(self, alias, path=None):
        """
            Loads a distributed_data_object from disk utilizing h5py.
            
            Parameters
            ----------
            alias : string
                The name of the dataset which is loaded from the hdf5 file.
 
            path : string *optional*
                The path to the hdf5 file. If no path is given, the alias is 
                taken as filename in the current path.
        """
        self.data = self.distributor.load_data(alias, path)
           
    def __sliceify__(self, inp):
        sliceified = []
        result = []
        if isinstance(inp, tuple):
            x = inp
Ultimanet's avatar
Ultimanet committed
817
818
        elif isinstance(inp, list):
            x = tuple(inp)
ultimanet's avatar
ultimanet committed
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
        else:
            x = (inp, )
        
        for i in range(len(x)):
            if isinstance(x[i], slice):
                result += [x[i], ]
                sliceified += [False, ]
            else:
                result += [slice(x[i], x[i]+1), ]
                sliceified += [True, ]
    
        return (tuple(result), sliceified)
                
                
    def __enfold__(self, in_data, sliceified):
        data = np.array(in_data, copy=False)    
        temp_shape = ()
        j=0
        for i in sliceified:
            if i == True:
                temp_shape += (1,)
840
841
842
843
844
                try:
                    if data.shape[j] == 1:
                        j +=1
                except(IndexError):
                    pass
ultimanet's avatar
ultimanet committed
845
            else:
846
847
848
849
                try:
                    temp_shape += (data.shape[j],)
                except(IndexError):
                    temp_shape += (1,)
ultimanet's avatar
ultimanet committed
850
851
852
853
854
855
                j += 1
        ## take into account that the sliceified tuple may be too short, because 
        ## of a non-exaustive list of slices
        for i in range(len(data.shape)-j):
            temp_shape += (data.shape[j],)
            j += 1
Ultimanet's avatar
Ultimanet committed
856
        
ultimanet's avatar
ultimanet committed
857
858
859
860
861
862
863
864
865
866
867
868
        return data.reshape(temp_shape)
    
    def __defold__(self, data, sliceified):
        temp_slice = ()
        for i in sliceified:
            if i == True:
                temp_slice += (0,)
            else:
                temp_slice += (slice(None),)
        return data[temp_slice]

    
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
class _distributor_factory(object):
    '''
        Comments:
          - The distributor's get_data and set_data functions MUST be 
            supplied with a tuple of slice objects. In case that there was 
            a direct integer involved, the unfolding will be done by the
            helper functions __sliceify__, __enfold__ and __defold__.
    '''
    def __init__(self):
        self.distributor_store = {}
    
    def parse_kwargs(self, strategy = None, kwargs = {}):
        return_dict = {}
        if strategy == 'not':
            pass
        if strategy == 'fftw' or strategy == 'equal':
            if kwargs.has_key('comm'):
                return_dict['comm'] = kwargs['comm']
        return return_dict
                        
    def hash_arguments(self, global_shape, dtype, kwargs={}):
        kwargs = kwargs.copy()
        if kwargs.has_key('comm'):
            kwargs['comm'] = id(kwargs['comm'])
        kwargs['global_shape'] = global_shape        
        kwargs['dtype'] = self.dictionize_np(dtype)
        return frozenset(kwargs.items())
ultimanet's avatar
ultimanet committed
896

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
    def dictionize_np(self, x):
        dic = x.__dict__.items()
        if x is np.float:
            dic[24] = 0 
            dic[29] = 0
            dic[37] = 0
        return frozenset(dic)            
            
    def get_distributor(self, distribution_strategy, global_shape, dtype,
                        **kwargs):
        ## check if the distribution strategy is known
        if not distribution_strategy in ['not', 'fftw', 'equal']:
            raise TypeError(about._errors.cstring(
                "ERROR: Unknown distribution strategy supplied."))
                
        ## parse the kwargs
        parsed_kwargs = self.parse_kwargs(strategy = distribution_strategy,
                                          kwargs = kwargs)
        hashed_arguments = self.hash_arguments(global_shape = global_shape,
                                               dtype = dtype,
                                               kwargs = parsed_kwargs)
        #print hashed_arguments                                               
        ## check if the distributors has already been produced in the past
        if self.distributor_store.has_key(hashed_arguments):
            return self.distributor_store[hashed_arguments]
        else:                                              
            ## produce new distributor
            if distribution_strategy == 'not':
                produced_distributor = _not_distributor(
                                                    global_shape = global_shape,
                                                    dtype = dtype)
            elif distribution_strategy == 'equal':
                produced_distributor = _slicing_distributor(
                                                    slicer = _equal_slicer,
                                                    global_shape = global_shape,
                                                    dtype = dtype,
                                                    **parsed_kwargs)
            elif distribution_strategy == 'fftw':
                produced_distributor = _slicing_distributor(
                                                    slicer = _fftw_slicer,
                                                    global_shape = global_shape,
                                                    dtype = dtype,
                                                    **parsed_kwargs)                                                
            self.distributor_store[hashed_arguments] = produced_distributor                                             
            return self.distributor_store[hashed_arguments]
            
            
distributor_factory = _distributor_factory()
ultimanet's avatar
ultimanet committed
945
        
946
947
class _slicing_distributor(object):
    
ultimanet's avatar
ultimanet committed
948

949
950
    def __init__(self, slicer, global_shape=None, dtype=None, 
                 comm=MPI.COMM_WORLD):
ultimanet's avatar
ultimanet committed
951
952
        
        if comm.rank == 0:        
953
954
955
956
957
            if global_shape is None:
                raise TypeError(about._errors.cstring(
                    "ERROR: No shape supplied!"))
            else:
                self.global_shape = global_shape      
ultimanet's avatar
ultimanet committed
958
959
        else:
            self.global_shape = None
Ultimanet's avatar
Ultimanet committed
960
            
ultimanet's avatar
ultimanet committed
961
962
963
964
        self.global_shape = comm.bcast(self.global_shape, root = 0)
        self.global_shape = tuple(self.global_shape)
        
        if comm.rank == 0:        
965
966
967
                if dtype is None:        
                    raise TypeError(about._errors.cstring(
                    "ERROR: Failed setting datatype! No datatype supplied."))
ultimanet's avatar
ultimanet committed
968
                else:
969
                    self.dtype = dtype                    
ultimanet's avatar
ultimanet committed
970
971
972
        else:
            self.dtype=None
        self.dtype = comm.bcast(self.dtype, root=0)
973

ultimanet's avatar
ultimanet committed
974
        
975
        self._my_dtype_converter = _global_dtype_converter
ultimanet's avatar
ultimanet committed
976
977
        
        if not self._my_dtype_converter.known_np_Q(self.dtype):
Ultimanet's avatar
Ultimanet committed
978
            raise TypeError(about._errors.cstring(\
979
            "ERROR: The datatype "+str(self.dtype)+" is not known to mpi4py."))
ultimanet's avatar
ultimanet committed
980
981
982

        self.mpi_dtype  = self._my_dtype_converter.to_mpi(self.dtype)
        
983
984
985
986
987
988
989
990
        #self._local_size = pyfftw.local_size(self.global_shape)
        #self.local_start = self._local_size[2]
        #self.local_end = self.local_start + self._local_size[1]
        self.slicer = lambda global_shape: slicer(global_shape, comm = comm)
        self._local_size = self.slicer(self.global_shape)
        self.local_start = self._local_size[0]
        self.local_end = self._local_size[1] 
        
ultimanet's avatar
ultimanet committed
991
992
993
994
        self.local_length = self.local_end-self.local_start        
        self.local_shape = (self.local_length,) + tuple(self.global_shape[1:])
        self.local_dim = np.product(self.local_shape)
        self.local_dim_list = np.empty(comm.size, dtype=np.int)
995
996
        comm.Allgather([np.array(self.local_dim,dtype=np.int), MPI.INT],\
            [self.local_dim_list, MPI.INT])
ultimanet's avatar
ultimanet committed
997
998
        self.local_dim_offset = np.sum(self.local_dim_list[0:comm.rank])
        
999
1000
1001
        self.local_slice = np.array([self.local_start, self.local_end,\
            self.local_length, self.local_dim, self.local_dim_offset],\
            dtype=np.int)
ultimanet's avatar
ultimanet committed
1002
1003
1004
        ## collect all local_slices 
        ## [start, stop, length=stop-start, dimension, dimension_offset]
        self.all_local_slices = np.empty((comm.size,5),dtype=np.int)
1005
1006
        comm.Allgather([np.array((self.local_slice,),dtype=np.int), MPI.INT],\
            [self.all_local_slices, MPI.INT])
ultimanet's avatar
ultimanet committed
1007
        
1008
        self.comm = comm
ultimanet's avatar
ultimanet committed
1009
        
1010
1011
1012
1013
1014
1015
    def globalize_flat_index(self, index):
        return int(index)+self.local_dim_offset
        
    def globalize_index(self, index):
        index = np.array(index, dtype=np.int).flatten()
        if index.shape != (len(self.global_shape),):
Ultimanet's avatar
Ultimanet committed
1016
            raise TypeError(about._errors.cstring("ERROR: Length\
1017
1018
1019
1020
1021
1022
1023
1024
1025
                of index tuple does not match the array's shape!"))                 
        globalized_index = index
        globalized_index[0] = index[0] + self.local_start
        ## ensure that the globalized index list is within the bounds
        global_index_memory = globalized_index
        globalized_index = np.clip(globalized_index, 
                                   -np.array(self.global_shape),
                                    np.array(self.global_shape)-1)
        if np.any(global_index_memory != globalized_index):
Ultimanet's avatar
Ultimanet committed
1026
            about.warnings.cprint("WARNING: Indices were clipped!")
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        globalized_index = tuple(globalized_index)
        return globalized_index
    
    def _allgather(self, thing, comm=None):
        if comm == None:
            comm = self.comm            
        gathered_things = comm.allgather(thing)
        return gathered_things
    
    def distribute_data(self, data=None, comm = None, alias=None,
                        path=None, **kwargs):
ultimanet's avatar
ultimanet committed
1038
1039
1040
1041
1042
        '''
        distribute data checks 
        - whether the data is located on all nodes or only on node 0
        - that the shape of 'data' matches the global_shape
        '''
1043
1044
        if comm == None:
            comm = self.comm            
1045
1046
        rank = comm.Get_rank()
        size = comm.Get_size()        
1047
        local_data_available_Q = np.array((int(data is not None), ))
1048
        data_available_Q = np.empty(size,dtype=int)
1049
1050
        comm.Allgather([local_data_available_Q, MPI.INT], 
                       [data_available_Q, MPI.INT])        
1051
1052
        
        if data_available_Q[0]==False and found['h5py']:
ultimanet's avatar
ultimanet committed
1053
1054
1055
1056
1057
1058
1059
            try: 
                file_path = path if path != None else alias 
                if found['h5py_parallel']:
                    f = h5py.File(file_path, 'r', driver='mpio', comm=comm)
                else:
                    f= h5py.File(file_path, 'r')        
                dset = f[alias]
1060
1061
                if dset.shape == self.global_shape and \
                 dset.dtype.type == self.dtype:
ultimanet's avatar
ultimanet committed
1062
1063
1064
1065
                    temp_data = dset[self.local_start:self.local_end]
                    f.close()
                    return temp_data
                else:
Ultimanet's avatar
Ultimanet committed
1066
                    raise TypeError(about._errors.cstring("ERROR: \
1067
                    Input data has the wrong shape or wrong dtype!"))                 
ultimanet's avatar
ultimanet committed
1068
1069
1070
            except(IOError, AttributeError):
                pass
            
1071
        if np.all(data_available_Q==False):
Ultimanet's avatar
Ultimanet committed
1072
            return np.empty(self.local_shape, dtype=self.dtype, order='C')
ultimanet's avatar
ultimanet committed
1073
        ## if all nodes got data, we assume that it is the right data and 
1074
1075
        ## store it individually. If not, take the data on node 0 and scatter 
        ## it...
ultimanet's avatar
ultimanet committed
1076
        if np.all(data_available_Q):
1077
1078
            return data[self.local_start:self.local_end].astype(self.dtype,\
                copy=False)    
1079
1080
        ## ... but only if node 0 has actually data!
        elif data_available_Q[0] == False:# or np.all(data_available_Q==False):
Ultimanet's avatar
Ultimanet committed
1081
            return np.empty(self.local_shape, dtype=self.dtype, order='C')
1082
        
ultimanet's avatar
ultimanet committed
1083
1084
1085
1086
1087
        else:
            if data == None:
                data = np.empty(self.global_shape)            
            if rank == 0:
                if np.all(data.shape != self.global_shape):
Ultimanet's avatar
Ultimanet committed
1088
                    raise TypeError(about._errors.cstring(\
1089
                        "ERROR: Input data has the wrong shape!"))
ultimanet's avatar
ultimanet committed
1090
            ## Scatter the data!            
Ultimanet's avatar
Ultimanet committed
1091
            _scattered_data = np.empty(self.local_shape, dtype = self.dtype)
ultimanet's avatar
ultimanet committed
1092
1093
            _dim_list = self.all_local_slices[:,3]
            _dim_offset_list = self.all_local_slices[:,4]
1094
1095
            comm.Scatterv([data, _dim_list, _dim_offset_list, self.mpi_dtype],\
                [_scattered_data, self.mpi_dtype], root=0)
ultimanet's avatar
ultimanet committed
1096
1097
1098
            return _scattered_data
        return None
    
Ultimanet's avatar
Ultimanet committed
1099
1100
    def _disperse_data_primitive(self, data, to_slices, data_update, 
                                 from_slices, source_rank='all', comm=None):
1101
1102
        if comm == None:
            comm = self.comm            
1103
1104
        ## compute the part of the slice which is relevant for the 
        ## individual node      
ultimanet's avatar
ultimanet committed
1105
        localized_start, localized_stop = self._backshift_and_decycle(
Ultimanet's avatar
Ultimanet committed
1106
            to_slices[0], self.local_start, self.local_end,\
1107
1108
                self.global_shape[0])
        local_slice = (slice(localized_start, localized_stop,\
Ultimanet's avatar
Ultimanet committed
1109
                        to_slices[0].step),) + to_slices[1:]
ultimanet's avatar
ultimanet committed
1110
1111
1112
1113
1114
        
        ## compute the parameter sets and list for the data splitting
        local_slice_shape = data[local_slice].shape        
        local_affected_data_length = local_slice_shape[0]
        local_affected_data_length_list=np.empty(comm.size, dtype=np.int)        
1115
1116
1117
1118
1119
        comm.Allgather(\
            [np.array(local_affected_data_length, dtype=np.int), MPI.INT],\
            [local_affected_data_length_list, MPI.INT])        
        local_affected_data_length_offset_list = np.append([0],\
                            np.cumsum(local_affected_data_length_list)[:-1])
ultimanet's avatar
ultimanet committed
1120
1121
1122
1123
1124
1125
1126
1127
        
        
        if source_rank == 'all':
            ## only take the relevant part out of data_update and plug it into 
            ## data[local_slice]
            r = comm.rank
            o = local_affected_data_length_offset_list
            l = local_affected_data_length
Ultimanet's avatar
Ultimanet committed
1128
1129
1130
1131
1132
1133
            
            ## if the from_slices object is not None, i.e. only a part from
            ## the data source is used, form the update_slice accordingly
            if from_slices == None:
                update_slice = (slice(o[r], o[r]+l),)
            else:
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
                ## Determine the part of the source array, which is relevant
                ## for the target rank
                if (from_slices[0].step > 0) or (from_slices[0].step is None):
                    ## f_relative_start: index of start of source data in 
                    ## source array
                    f_lower_end = from_slices[0].start
                    if f_lower_end is None:
                        f_lower_end = 0
                    ## f_start: index of start of specific source data in 
                    ## source array
                    f_start = f_lower_end + o[r]
                    ## f_stop: index of stop of specific source data
                    f_stop = f_start + l
                  
                                        
                elif from_slices[0].step < 0:
                    ## f_relative_start: index of start of source data in 
                    ## source array
                    f_upper_end = from_slices[0].start
                    if f_upper_end is None:
                        f_upper_end = data_update.shape[0] - 1
                    ## f_start: index of start of specific source data in 
                    ## source array
                    f_start = f_upper_end - o[r] 
                    ## f_stop: index of stop of specific source data
                    f_stop = f_start - l
Ultimanet's avatar
Ultimanet committed
1160
1161
                    
                else:
1162
1163
1164
1165
1166
1167
1168
                    raise ValueError(about._errors.cstring(\
                        "ERROR: step size == 0!")) 
                        
                update_slice = (slice(f_start, 
                                          f_stop, 
                                          from_slices[0].step),)
            
Ultimanet's avatar
Ultimanet committed
1169
                update_slice += from_slices[1:]
1170
1171
            data[local_slice] = np.array(data_update[update_slice],\
                                    copy=False).astype(self.dtype)
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
                
#                ## TODO: Fallunterscheidung, ob direction positiv oder negativ!!
#                if from_slices[0].step > 0:
#                    f_relative_start = from_slices[0].start
#                else:
#                    f_relative_start = from_slices[0].stop + 1
#
#                if f_relative_start is None:
#                    f_relative_start = 0
#                    
#                local_start = f_relative_start + o[r]
#                print ('rank', rank, 
#                       'f_relative_start', f_relative_start,
#                       'local_start', local_start,
#                       'o[r]', o[r])
#                       
#                
#                update_slice = self._backshift_and_decycle(
#                                        slice_object = from_slices[0],
#                                        shifted_start = local_start,
#                                        shifted_stop = local_start+l,
#                                        global_length = data_update.shape[0])
#                                        
#                print ('rank', rank, update_slice)
#                f_step = from_slices[0].step
#                if f_step == None:
#                    f_step = 1
#                    
#                f_direction = np.sign(f_step)
#
#                f_relative_start = from_slices[0].start
#
#                ## Case 1: f_direction is positive
#                if f_direction > 0:
#                    if f_relative_start != None:
#                        f_start = f_relative_start + o[r]
#                
#                
#                
#                
#                if f_relative_start != None:
#                    f_start = f_relative_start + f_direction*o[r]
#                else:
#                    f_start = None
#                    f_relative_start = self.local_start + l - 1
#                
#                
#                f_stop = f_relative_start + f_direction*(o[r]+l*np.abs(f_step))
#                print (rank, 
#                'f_start', f_start, 
#                'offset', self.local_start, 
#                'f_relative_start', f_relative_start,
#                'f_stop', f_stop)
#                if f_stop < 0:
#                    f_stop = None
#
#
#                ## combine the slicing for the first dimension 
#                update_slice = (slice(f_start,
#                                      f_stop,
#                                      f_step),
#                                )
#                ## add the rest of the from_slicing
#                update_slice += from_slices[1:]
#
#            data[local_slice] = np.array(data_update[update_slice],\
#                                    copy=False).astype(self.dtype)
#                
ultimanet's avatar
ultimanet committed
1240
1241
1242
        else:
            ## Scatterv the relevant part from the source_rank to the others 
            ## and plug it into data[local_slice]
1243
1244
1245
            
            ## if the first slice object has a negative step size, the ordering 
            ## of the Scatterv function must be reversed         
Ultimanet's avatar
Ultimanet committed
1246
            order = to_slices[0].step
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
            if order == None:
                order = 1
            else:
                order = np.sign(order)

            local_affected_data_dim_list = \
                np.array(local_affected_data_length_list) *\
                    np.product(local_slice_shape[1:])                    

            local_affected_data_dim_offset_list = np.append([0],\
                np.cumsum(local_affected_data_dim_list[::order])[:-1])[::order]
                
            local_dispersed_data = np.zeros(local_slice_shape,\
                dtype=self.dtype)
            comm.Scatterv(\
Ultimanet's avatar
Ultimanet committed
1262
1263
                [np.array(data_update[from_slices],copy=False).\
                                                        astype(self.dtype),\
1264
1265
                    local_affected_data_dim_list,\
                    local_affected_data_dim_offset_list, self.mpi_dtype],
ultimanet's avatar
ultimanet committed
1266
1267
1268
1269
1270
1271
1272
                          [local_dispersed_data, self.mpi_dtype], 
                          root=source_rank)                            
            data[local_slice] = local_dispersed_data
        return None
        
    
    
Ultimanet's avatar
Ultimanet committed
1273
1274
    def disperse_data(self, data, to_slices, data_update, from_slices=None,
                      comm=None, **kwargs):
1275
1276
        if comm == None:
            comm = self.comm            
Ultimanet's avatar
Ultimanet committed
1277
        to_slices_list = comm.allgather(to_slices)
ultimanet's avatar
ultimanet committed
1278
        ## check if all slices are the same. 
Ultimanet's avatar
Ultimanet committed
1279
        if all(x == to_slices_list[0] for x in to_slices_list):
ultimanet's avatar
ultimanet committed
1280
1281
            ## in this case, the _disperse_data_primitive can simply be called 
            ##with target_rank = 'all'
Ultimanet's avatar
Ultimanet committed
1282
1283
1284
1285
1286
1287
            self._disperse_data_primitive(data = data, 
                                          to_slices = to_slices,
                                          data_update=data_update,
                                          from_slices=from_slices, 
                                          source_rank='all', 
                                          comm=comm)
1288
1289
        ## if the different nodes got different slices, disperse the data 
        ## individually
ultimanet's avatar
ultimanet committed
1290
1291
        else:
            i = 0        
Ultimanet's avatar
Ultimanet committed
1292
            for temp_to_slices in to_slices_list:
ultimanet's avatar
ultimanet committed
1293
                ## make the collect_data call on all nodes            
Ultimanet's avatar
Ultimanet committed
1294
1295
1296
1297
1298
1299
                self._disperse_data_primitive(data=data,
                                              to_slices=temp_to_slices,
                                              data_update=data_update,
                                              from_slices=from_slices,
                                              source_rank=i, 
                                              comm=comm)
ultimanet's avatar
ultimanet committed
1300
1301
1302
                i += 1
                 
        
1303
1304
1305
1306
    def _collect_data_primitive(self, data, slice_objects, target_rank='all', comm=None):
        if comm == None:
            comm = self.comm            
            
ultimanet's avatar
ultimanet committed
1307
        localized_start, localized_stop = self._backshift_and_decycle(
1308
            slice_objects[0], self.local_start, self.local_end, self.global_shape[0])
ultimanet's avatar
ultimanet committed
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
        local_slice = (slice(localized_start,localized_stop,slice_objects[0].step),)+slice_objects[1:]
        local_collected_data = np.ascontiguousarray(data[local_slice])

        local_collected_data_length = local_collected_data.shape[0]
        local_collected_data_length_list=np.empty(comm.size, dtype=np.int)        
        comm.Allgather([np.array(local_collected_data_length, dtype=np.int), MPI.INT], [local_collected_data_length_list, MPI.INT])        
             
        collected_data_length = np.sum(local_collected_data_length_list) 
        collected_data_shape = (collected_data_length,)+local_collected_data.shape[1:]
        local_collected_data_dim_list= np.array(local_collected_data_length_list) * np.product(local_collected_data.shape[1:])        
        
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
        ## if the first slice object has a negative step size, the ordering 
        ## of the Gatherv functions must be reversed         
        order = slice_objects[0].step
        if order == None:
            order = 1
        else:
            order = np.sign(order)
            
        local_collected_data_dim_offset_list = np.append([0],np.cumsum(local_collected_data_dim_list[::order])[:-1])[::order]

        local_collected_data_dim_offset_list = local_collected_data_dim_offset_list
ultimanet's avatar
ultimanet committed
1331
        collected_data = np.empty(collected_data_shape, dtype=self.dtype)
1332
        
ultimanet's avatar
ultimanet committed
1333
1334
1335
1336
1337
1338
1339
1340
1341

        if target_rank == 'all':
            comm.Allgatherv([local_collected_data, self.mpi_dtype], 
                         [collected_data, local_collected_data_dim_list, local_collected_data_dim_offset_list, self.mpi_dtype])                
        else:
            comm.Gatherv([local_collected_data, self.mpi_dtype], 
                         [collected_data, local_collected_data_dim_list, local_collected_data_dim_offset_list, self.mpi_dtype], root=target_rank)                            
        return collected_data

1342
1343
1344
    def collect_data(self, data, slice_objects, comm=None, **kwargs):
        if comm == None:
            comm = self.comm                    
ultimanet's avatar
ultimanet committed
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
        slice_objects_list = comm.allgather(slice_objects)
        ## check if all slices are the same. 
        if all(x == slice_objects_list[0] for x in slice_objects_list):
            ## in this case, the _collect_data_primitive can simply be called 
            ##with target_rank = 'all'
            return self._collect_data_primitive(data=data, slice_objects=slice_objects, target_rank='all', comm=comm)
        
        ## if the different nodes got different slices, collect the data individually
        i = 0        
        for temp_slices in slice_objects_list:
            ## make the collect_data call on all nodes            
            temp_data = self._collect_data_primitive(data=data, slice_objects=temp_slices, target_rank=i, comm=comm)
            ## save the result only on the pulling node            
            if comm.rank == i:
                individual_data = temp_data
            i += 1
        return individual_data
        
    
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
    def _backshift_and_decycle(self, slice_object, shifted_start, shifted_stop, global_length):
        ## Crop the start value
        if slice_object.start > global_length-1:
            slice_object = slice(global_length-1, slice_object.stop,
                                 slice_object.step)
                                 
        ## Reformulate negative indices                                  
        if slice_object.start < 0 and slice_object.start != None:
            temp_start = slice_object.start + global_length
            if temp_start < 0:
Ultimanet's avatar
Ultimanet committed
1374
                raise ValueError(about._errors.cstring(\
1375
1376
1377
1378
1379
1380
1381
                "ERROR: Index is out of bounds!"))
            slice_object = slice(temp_start, slice_object.stop,\
            slice_object.step) 

        if slice_object.stop < 0 and slice_object.stop != None:
            temp_stop = slice_object.stop + global_length
            if temp_stop < 0:
Ultimanet's avatar
Ultimanet committed
1382
                raise ValueError(about._errors.cstring(\
1383
1384
1385
1386
1387
                "ERROR: Index is out of bounds!"))
            slice_object = slice(slice_object.start, temp_stop,\
            slice_object.step) 
                
        ## initialize the step
ultimanet's avatar
ultimanet committed
1388
1389
1390
1391
        if slice_object.step == None:
            step = 1
        else:
            step = slice_object.step
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
        
        if step > 0:
            shift = shifted_start
            ## calculate the start index
            if slice_object.start == None:
                local_start = (-shift)%step ## step size compensation
            else:
                local_start = slice_object.start - shift
                ## if the local_start is negative, pull it up to zero
                local_start = local_start%step if local_start < 0 else local_start
            ## calculate the stop index
            if slice_object.stop == None:
                local_stop = None
            else:
                local_stop = slice_object.stop - shift
                ## if local_stop is negative, pull it up to zero
                local_stop = 0 if local_stop < 0 else local_stop
                
        else: # if step < 0
            step = -step
            local_length = shifted_stop - shifted_start
            ## calculate the start index. (Here, local_start > local_stop!)
            if slice_object.start == None:
                local_start = (local_length-1) -\
                    (global_length-shifted_stop)%step #stepsize compensation
            else:
                local_start = slice_object.start - shifted_start
1419
1420
1421
1422
1423
                ## if the local_start is negative, immediately return the 
                ## values for an empty slice
                if local_start < 0:
                    return 0, 0
                                
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
                ## if the local_start is greater than the local length, pull
                ## it down 
                if local_start > local_length-1:
                    overhead = local_start - (local_length-1)
                    overhead = overhead - overhead%(-step)
                    local_start = local_start - overhead
            ## calculate the stop index
            if slice_object.stop == None:
                local_stop = None
            else:
                local_stop = slice_object.stop - shifted_start
1435
1436
                ## if local_stop is negative, pull it up to None
                local_stop = None if local_stop < 0 else local_stop    
1437
        ## Note: if start or stop are greater than the array length,
ultimanet's avatar
ultimanet committed
1438
        ## numpy will automatically cut the index value down into the 
1439
        ## array's range
ultimanet's avatar
ultimanet committed
1440
        return local_start, local_stop        
1441
    
Ultimanet's avatar
Ultimanet committed
1442
1443
    def inject(self, data, to_slices, data_update, from_slices, comm=None, 
               **kwargs):
Ultimanet's avatar
Ultimanet committed
1444
        ## check if to_key and from_key are completely built of slices 
Ultimanet's avatar
Ultimanet committed
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
        if not np.all(
            np.vectorize(lambda x: isinstance(x, slice))(to_slices)):
            raise ValueError(about._errors.cstring(
            "ERROR: The to_slices argument must be a list or tuple of slices!")
            )

        if not np.all(
            np.vectorize(lambda x: isinstance(x, slice))(from_slices)):
            raise ValueError(about._errors.cstring(
            "ERROR: The from_slices argument must be a list or tuple of slices!")
            )
            
        to_slices = tuple(to_slices)
        from_slices = tuple(from_slices)
        self.disperse_data(data = data, 
                           to_slices = to_slices,
                           data_update = data_update,
                           from_slices = from_slices,
                           comm=comm,
                           **kwargs)
Ultimanet's avatar
Ultimanet committed
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475

    def extract_local_data(self, data_object):
        ## if data_object is not a ndarray or a d2o, cast it to a ndarray
        if not (isinstance(data_object, np.ndarray) or 
                isinstance(data_object, distributed_data_object)):
            data_object = np.array(data_object)
        ## check if the shapes are remotely compatible, reshape if possible
        ## and determine which dimensions match only via broadcasting
        try:
            (data_object, matching_dimensions) = \
                self._reshape_foreign_data(data_object)