extra.py 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2020 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17
18

import numpy as np
19
from numpy.testing import assert_
Philipp Arras's avatar
Philipp Arras committed
20

21
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
fix    
Martin Reinecke committed
22
23
from .field import Field
from .linearization import Linearization
24
from .multi_domain import MultiDomain
25
from .multi_field import MultiField
26
from .operators.linear_operator import LinearOperator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
27
from .sugar import from_random
28

Philipp Arras's avatar
Philipp Arras committed
29
30
__all__ = ["consistency_check", "check_jacobian_consistency",
           "assert_allclose"]
31

Philipp Arras's avatar
Philipp Arras committed
32

Philipp Arras's avatar
Philipp Arras committed
33
def assert_allclose(f1, f2, atol, rtol):
Martin Reinecke's avatar
Martin Reinecke committed
34
    if isinstance(f1, Field):
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
35
        return np.testing.assert_allclose(f1.val, f2.val, atol=atol, rtol=rtol)
Martin Reinecke's avatar
Martin Reinecke committed
36
    for key, val in f1.items():
Philipp Arras's avatar
Philipp Arras committed
37
        assert_allclose(val, f2[key], atol=atol, rtol=rtol)
Martin Reinecke's avatar
Martin Reinecke committed
38
39


40
41
def _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol,
                            only_r_linear):
Martin Reinecke's avatar
Martin Reinecke committed
42
43
44
    needed_cap = op.TIMES | op.ADJOINT_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
45
46
    f1 = from_random(op.domain, "normal", dtype=domain_dtype)
    f2 = from_random(op.target, "normal", dtype=target_dtype)
Martin Reinecke's avatar
Martin Reinecke committed
47
48
    res1 = f1.s_vdot(op.adjoint_times(f2))
    res2 = op.times(f1).s_vdot(f2)
49
50
    if only_r_linear:
        res1, res2 = res1.real, res2.real
Martin Reinecke's avatar
Martin Reinecke committed
51
52
53
54
55
56
57
    np.testing.assert_allclose(res1, res2, atol=atol, rtol=rtol)


def _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.INVERSE_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
58
    foo = from_random(op.target, "normal", dtype=target_dtype)
Martin Reinecke's avatar
Martin Reinecke committed
59
    res = op(op.inverse_times(foo))
Philipp Arras's avatar
Philipp Arras committed
60
    assert_allclose(res, foo, atol=atol, rtol=rtol)
Martin Reinecke's avatar
Martin Reinecke committed
61

62
    foo = from_random(op.domain, "normal", dtype=domain_dtype)
Martin Reinecke's avatar
Martin Reinecke committed
63
    res = op.inverse_times(op(foo))
Philipp Arras's avatar
Philipp Arras committed
64
    assert_allclose(res, foo, atol=atol, rtol=rtol)
Martin Reinecke's avatar
Martin Reinecke committed
65
66


67
68
69
70
def _full_implementation(op, domain_dtype, target_dtype, atol, rtol,
                         only_r_linear):
    _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol,
                            only_r_linear)
Martin Reinecke's avatar
Martin Reinecke committed
71
72
73
    _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol)


74
def _check_linearity(op, domain_dtype, atol, rtol):
Martin Reinecke's avatar
Martin Reinecke committed
75
76
77
    needed_cap = op.TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
78
79
    fld1 = from_random(op.domain, "normal", dtype=domain_dtype)
    fld2 = from_random(op.domain, "normal", dtype=domain_dtype)
Martin Reinecke's avatar
Martin Reinecke committed
80
    alpha = np.random.random()  # FIXME: this can break badly with MPI!
81
82
    val1 = op(alpha*fld1+fld2)
    val2 = alpha*op(fld1)+op(fld2)
Philipp Arras's avatar
Philipp Arras committed
83
    assert_allclose(val1, val2, atol=atol, rtol=rtol)
84
85


Philipp Arras's avatar
Philipp Arras committed
86
def _actual_domain_check_linear(op, domain_dtype=None, inp=None):
87
88
89
90
    needed_cap = op.TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    if domain_dtype is not None:
91
        inp = from_random(op.domain, "normal", dtype=domain_dtype)
92
93
94
95
96
97
    elif inp is None:
        raise ValueError('Need to specify either dtype or inp')
    assert_(inp.domain is op.domain)
    assert_(op(inp).domain is op.target)


Philipp Arras's avatar
Philipp Arras committed
98
def _actual_domain_check_nonlinear(op, loc):
99
100
    assert isinstance(loc, (Field, MultiField))
    assert_(loc.domain is op.domain)
Philipp Arras's avatar
Philipp Arras committed
101
102
103
104
105
106
107
108
109
110
111
112
    for wm in [False, True]:
        lin = Linearization.make_var(loc, wm)
        reslin = op(lin)
        assert_(lin.domain is op.domain)
        assert_(lin.target is op.domain)
        assert_(lin.val.domain is lin.domain)
        assert_(reslin.domain is op.domain)
        assert_(reslin.target is op.target)
        assert_(reslin.val.domain is reslin.target)
        assert_(reslin.target is op.target)
        assert_(reslin.jac.domain is reslin.domain)
        assert_(reslin.jac.target is reslin.target)
Philipp Arras's avatar
Philipp Arras committed
113
        assert_(lin.want_metric == reslin.want_metric)
Philipp Arras's avatar
Philipp Arras committed
114
115
        _actual_domain_check_linear(reslin.jac, inp=loc)
        _actual_domain_check_linear(reslin.jac.adjoint, inp=reslin.jac(loc))
Philipp Arras's avatar
Philipp Arras committed
116
        if reslin.metric is not None:
Philipp Arras's avatar
Philipp Arras committed
117
118
            assert_(reslin.metric.domain is reslin.metric.target)
            assert_(reslin.metric.domain is op.domain)
119
120


121
122
123
def _domain_check(op):
    for dd in [op.domain, op.target]:
        if not isinstance(dd, (DomainTuple, MultiDomain)):
Martin Reinecke's avatar
Martin Reinecke committed
124
125
126
            raise TypeError(
                'The domain and the target of an operator need to',
                'be instances of either DomainTuple or MultiDomain.')
127
128


129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def _performance_check(op, pos, raise_on_fail):
    class CountingOp(LinearOperator):
        def __init__(self, domain):
            from .sugar import makeDomain
            self._domain = self._target = makeDomain(domain)
            self._capability = self.TIMES | self.ADJOINT_TIMES
            self._count = 0

        def apply(self, x, mode):
            self._count += 1
            return x

        @property
        def count(self):
            return self._count
Philipp Arras's avatar
Philipp Arras committed
144
145
    for wm in [False, True]:
        cop = CountingOp(op.domain)
Philipp Arras's avatar
Philipp Arras committed
146
147
        myop = op @ cop
        myop(pos)
Philipp Arras's avatar
Philipp Arras committed
148
        cond = [cop.count != 1]
Philipp Arras's avatar
Philipp Arras committed
149
        lin = myop(2*Linearization.make_var(pos, wm))
Philipp Arras's avatar
Philipp Arras committed
150
151
152
153
154
        cond.append(cop.count != 2)
        lin.jac(pos)
        cond.append(cop.count != 3)
        lin.jac.adjoint(lin.val)
        cond.append(cop.count != 4)
Philipp Arras's avatar
Philipp Arras committed
155
        if lin.metric is not None:
Philipp Arras's avatar
Philipp Arras committed
156
157
158
159
160
161
162
163
164
            lin.metric(pos)
            cond.append(cop.count != 6)
        if any(cond):
            s = 'The operator has a performance problem (want_metric={}).'.format(wm)
            from .logger import logger
            logger.error(s)
            logger.info(cond)
            if raise_on_fail:
                raise RuntimeError(s)
165
166


Martin Reinecke's avatar
Martin Reinecke committed
167
def consistency_check(op, domain_dtype=np.float64, target_dtype=np.float64,
168
                      atol=0, rtol=1e-7, only_r_linear=False):
Reimar H Leike's avatar
Reimar H Leike committed
169
170
171
172
    """
    Checks an operator for algebraic consistency of its capabilities.

    Checks whether times(), adjoint_times(), inverse_times() and
Philipp Arras's avatar
Philipp Arras committed
173
    adjoint_inverse_times() (if in capability list) is implemented
Reimar H Leike's avatar
Reimar H Leike committed
174
    consistently. Additionally, it checks whether the operator is linear.
Philipp Arras's avatar
Philipp Arras committed
175
176
177
178
179

    Parameters
    ----------
    op : LinearOperator
        Operator which shall be checked.
Reimar H Leike's avatar
Reimar H Leike committed
180
    domain_dtype : dtype
Philipp Arras's avatar
Philipp Arras committed
181
182
        The data type of the random vectors in the operator's domain. Default
        is `np.float64`.
Reimar H Leike's avatar
Reimar H Leike committed
183
    target_dtype : dtype
Philipp Arras's avatar
Philipp Arras committed
184
185
186
        The data type of the random vectors in the operator's target. Default
        is `np.float64`.
    atol : float
Martin Reinecke's avatar
Martin Reinecke committed
187
188
        Absolute tolerance for the check. If rtol is specified,
        then satisfying any tolerance will let the check pass.
Reimar H Leike's avatar
Reimar H Leike committed
189
        Default: 0.
Philipp Arras's avatar
Philipp Arras committed
190
    rtol : float
Martin Reinecke's avatar
Martin Reinecke committed
191
192
        Relative tolerance for the check. If atol is specified,
        then satisfying any tolerance will let the check pass.
Reimar H Leike's avatar
Reimar H Leike committed
193
        Default: 0.
194
195
196
    only_r_linear: bool
        set to True if the operator is only R-linear, not C-linear.
        This will relax the adjointness test accordingly.
Philipp Arras's avatar
Philipp Arras committed
197
    """
198
199
    if not isinstance(op, LinearOperator):
        raise TypeError('This test tests only linear operators.')
200
    _domain_check(op)
Philipp Arras's avatar
Philipp Arras committed
201
202
203
204
    _actual_domain_check_linear(op, domain_dtype)
    _actual_domain_check_linear(op.adjoint, target_dtype)
    _actual_domain_check_linear(op.inverse, target_dtype)
    _actual_domain_check_linear(op.adjoint.inverse, domain_dtype)
205
    _check_linearity(op, domain_dtype, atol, rtol)
Martin Reinecke's avatar
Martin Reinecke committed
206
207
208
    _check_linearity(op.adjoint, target_dtype, atol, rtol)
    _check_linearity(op.inverse, target_dtype, atol, rtol)
    _check_linearity(op.adjoint.inverse, domain_dtype, atol, rtol)
209
210
211
212
213
214
    _full_implementation(op, domain_dtype, target_dtype, atol, rtol,
                         only_r_linear)
    _full_implementation(op.adjoint, target_dtype, domain_dtype, atol, rtol,
                         only_r_linear)
    _full_implementation(op.inverse, target_dtype, domain_dtype, atol, rtol,
                         only_r_linear)
Martin Reinecke's avatar
Martin Reinecke committed
215
    _full_implementation(op.adjoint.inverse, domain_dtype, target_dtype, atol,
216
                         rtol, only_r_linear)
Martin Reinecke's avatar
Martin Reinecke committed
217
218


Martin Reinecke's avatar
Martin Reinecke committed
219
def _get_acceptable_location(op, loc, lin):
Martin Reinecke's avatar
Martin Reinecke committed
220
    if not np.isfinite(lin.val.s_sum()):
Martin Reinecke's avatar
Martin Reinecke committed
221
        raise ValueError('Initial value must be finite')
222
    dir = from_random(loc.domain, "normal")
Martin Reinecke's avatar
Martin Reinecke committed
223
224
    dirder = lin.jac(dir)
    if dirder.norm() == 0:
Martin Reinecke's avatar
Martin Reinecke committed
225
        dir = dir * (lin.val.norm()*1e-5)
Martin Reinecke's avatar
Martin Reinecke committed
226
    else:
Martin Reinecke's avatar
Martin Reinecke committed
227
        dir = dir * (lin.val.norm()*1e-5/dirder.norm())
Martin Reinecke's avatar
Martin Reinecke committed
228
229
230
231
    # Find a step length that leads to a "reasonable" location
    for i in range(50):
        try:
            loc2 = loc+dir
232
            lin2 = op(Linearization.make_var(loc2, lin.want_metric))
Martin Reinecke's avatar
Martin Reinecke committed
233
            if np.isfinite(lin2.val.s_sum()) and abs(lin2.val.s_sum()) < 1e20:
Martin Reinecke's avatar
Martin Reinecke committed
234
235
236
237
238
239
240
241
                break
        except FloatingPointError:
            pass
        dir = dir*0.5
    else:
        raise ValueError("could not find a reasonable initial step")
    return loc2, lin2

Martin Reinecke's avatar
Martin Reinecke committed
242

243
244
245
246
247
248
249
250
251
def _linearization_value_consistency(op, loc):
    for wm in [False, True]:
        lin = Linearization.make_var(loc, wm)
        fld0 = op(loc)
        fld1 = op(lin).val
        assert_allclose(fld0, fld1, 0, 1e-7)


def check_jacobian_consistency(op, loc, tol=1e-8, ntries=100, perf_check=True):
Martin Reinecke's avatar
Martin Reinecke committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    """
    Checks the Jacobian of an operator against its finite difference
    approximation.

    Computes the Jacobian with finite differences and compares it to the
    implemented Jacobian.

    Parameters
    ----------
    op : Operator
        Operator which shall be checked.
    loc : Field or MultiField
        An Field or MultiField instance which has the same domain
        as op. The location at which the gradient is checked
    tol : float
        Tolerance for the check.
268
269
    perf_check : Boolean
        Do performance check. May be disabled for very unimportant operators.
Martin Reinecke's avatar
Martin Reinecke committed
270
    """
271
    _domain_check(op)
272
    _actual_domain_check_nonlinear(op, loc)
273
274
    _performance_check(op, loc, bool(perf_check))
    _linearization_value_consistency(op, loc)
Martin Reinecke's avatar
Martin Reinecke committed
275
    for _ in range(ntries):
276
        lin = op(Linearization.make_var(loc))
Martin Reinecke's avatar
Martin Reinecke committed
277
        loc2, lin2 = _get_acceptable_location(op, loc, lin)
Martin Reinecke's avatar
Martin Reinecke committed
278
        dir = loc2-loc
Martin Reinecke's avatar
Martin Reinecke committed
279
280
        locnext = loc2
        dirnorm = dir.norm()
Martin Reinecke's avatar
Martin Reinecke committed
281
        hist = []
Martin Reinecke's avatar
Martin Reinecke committed
282
283
        for i in range(50):
            locmid = loc + 0.5*dir
284
            linmid = op(Linearization.make_var(locmid))
Martin Reinecke's avatar
Martin Reinecke committed
285
286
            dirder = linmid.jac(dir)
            numgrad = (lin2.val-lin.val)
Martin Reinecke's avatar
Martin Reinecke committed
287
            xtol = tol * dirder.norm() / np.sqrt(dirder.size)
Martin Reinecke's avatar
Martin Reinecke committed
288
289
            hist.append((numgrad-dirder).norm())
#            print(len(hist),hist[-1])
Martin Reinecke's avatar
Martin Reinecke committed
290
            if (abs(numgrad-dirder) <= xtol).s_all():
Martin Reinecke's avatar
Martin Reinecke committed
291
292
293
                break
            dir = dir*0.5
            dirnorm *= 0.5
Martin Reinecke's avatar
Martin Reinecke committed
294
            loc2, lin2 = locmid, linmid
Martin Reinecke's avatar
Martin Reinecke committed
295
        else:
Martin Reinecke's avatar
Martin Reinecke committed
296
            print(hist)
Martin Reinecke's avatar
Martin Reinecke committed
297
298
            raise ValueError("gradient and value seem inconsistent")
        loc = locnext
Philipp Arras's avatar
Fixup    
Philipp Arras committed
299
300
301
302
303
304
305
306

        # FIXME The following code shows that we need prober tests for complex
        # derivatives
        ddtype = loc.values()[0].dtype if isinstance(loc, MultiField) else loc.dtype
        tdtype = dirder.values()[0].dtype if isinstance(dirder, MultiField) else dirder.dtype
        only_r_linear = ddtype != tdtype
        consistency_check(linmid.jac, domain_dtype=ddtype, target_dtype=tdtype,
                          only_r_linear=only_r_linear)