nifty_mpi_data.py 61.8 KB
Newer Older
ultimanet's avatar
ultimanet committed
1
# -*- coding: utf-8 -*-
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2015 Max-Planck-Society
##
## Author: Theo Steininger
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.


ultimanet's avatar
ultimanet committed
24
25
26
27
28

##initialize the 'found-packages'-dictionary 
found = {}

import numpy as np
Ultimanet's avatar
Ultimanet committed
29
from nifty_about import about
ultimanet's avatar
ultimanet committed
30
31

try:
32
    from mpi4py import MPI
ultimanet's avatar
ultimanet committed
33
34
    found[MPI] = True
except(ImportError): 
35
    import mpi_dummy as MPI
ultimanet's avatar
ultimanet committed
36
37
38
39
40
41
42
43
44
    found[MPI] = False

try:
    import pyfftw
    found['pyfftw'] = True
except(ImportError):       
    found['pyfftw'] = False

try:
45
    import h5py
ultimanet's avatar
ultimanet committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    found['h5py'] = True
    found['h5py_parallel'] = h5py.get_config().mpi
except(ImportError):
    found['h5py'] = False
    found['h5py_parallel'] = False

   


class distributed_data_object(object):
    """

        NIFTY class for distributed data

        Parameters
        ----------
        global_data : {tuple, list, numpy.ndarray} *at least 1-dimensional*
            Initial data which will be casted to a numpy.ndarray and then 
            stored according to the distribution strategy. The global_data's
            shape overwrites global_shape.
        global_shape : tuple of ints, *optional*
            If no global_data is supplied, global_shape can be used to
            initialize an empty distributed_data_object
        dtype : type, *optional*
            If an explicit dtype is supplied, the given global_data will be 
            casted to it.            
        distribution_strategy : {'fftw' (default), 'not'}, *optional*
            Specifies the way, how global_data will be distributed to the 
            individual nodes. 
            'fftw' follows the distribution strategy of pyfftw.
            'not' does not distribute the data at all. 
            

        Attributes
        ----------
        data : numpy.ndarray
            The numpy.ndarray in which the individual node's data is stored.
        dtype : type
            Data type of the data object.
        distribution_strategy : string
            Name of the used distribution_strategy
        distributor : distributor
            The distributor object which takes care of all distribution and 
            consolidation of the data. 
        shape : tuple of int
            The global shape of the data
            
        Raises
        ------
        TypeError : 
            If the supplied distribution strategy is not known. 
        
    """
Ultimanet's avatar
Ultimanet committed
99
100
101
    def __init__(self,  global_data=None, global_shape=None, dtype=None, 
                 distribution_strategy='fftw', hermitian=False, 
                 *args, **kwargs):
ultimanet's avatar
ultimanet committed
102
        if global_data != None:
Ultimanet's avatar
Ultimanet committed
103
            if np.isscalar(global_data):
104
105
106
107
                global_data_input = None
                dtype = np.array(global_data).dtype.type
            else:
                global_data_input = np.array(global_data, copy=True, order='C')
ultimanet's avatar
ultimanet committed
108
109
        else:
            global_data_input = None
110

Ultimanet's avatar
Ultimanet committed
111
112
113
114
115
116
        self.hermitian = False

        self.distributor = self._get_distributor(distribution_strategy)(
                            global_data=global_data_input, 
                            global_shape=global_shape, 
                            dtype=dtype, **kwargs)
Ultimanet's avatar
Ultimanet committed
117

Ultimanet's avatar
Ultimanet committed
118
119
        self.set_full_data(data=global_data_input, hermitian=hermitian, 
                           **kwargs)
ultimanet's avatar
ultimanet committed
120
        
121
            
ultimanet's avatar
ultimanet committed
122
123
124
125
        self.distribution_strategy = distribution_strategy
        self.dtype = self.distributor.dtype
        self.shape = self.distributor.global_shape
        
126
127
        self.init_args = args 
        self.init_kwargs = kwargs
128
129
        
        ## If the input data was a scalar, set the whole array to this value
Ultimanet's avatar
Ultimanet committed
130
        if global_data != None and np.isscalar(global_data):
Ultimanet's avatar
Ultimanet committed
131
132
133
            temp = np.empty(self.distributor.local_shape)
            temp.fill(global_data)
            self.set_local_data(temp)
134
            self.hermitian = True
135
        
Ultimanet's avatar
Ultimanet committed
136
137
138
139
140
141
142
143
144
    def copy(self, dtype=None, distribution_strategy=None, **kwargs):
        temp_d2o = self.copy_empty(dtype=dtype, 
                                   distribution_strategy=distribution_strategy, 
                                   **kwargs)     
        if distribution_strategy == None or \
            distribution_strategy == self.distribution_strategy:
            temp_d2o.set_local_data(self.get_local_data(), copy=True)
        else:
            temp_d2o.set_full_data(self.get_full_data())
145
        temp_d2o.hermitian = self.hermitian
146
147
        return temp_d2o
    
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    def copy_empty(self, global_shape=None, dtype=None, 
                   distribution_strategy=None, **kwargs):
        if global_shape == None:
            global_shape = self.shape
        if dtype == None:
            dtype = self.dtype
        if distribution_strategy == None:
            distribution_strategy = self.distribution_strategy

        kwargs.update(self.init_kwargs)
        
        temp_d2o = distributed_data_object(global_shape=global_shape,
                                           dtype=dtype,
                                           distribution_strategy=distribution_strategy,
162
                                           *self.init_args,
163
                                           **kwargs)
164
165
        return temp_d2o
    
Ultimanet's avatar
Ultimanet committed
166
167
168
169
170
171
172
173
174
175
    def apply_scalar_function(self, function, inplace=False):
        if inplace == True:        
            temp = self
        else:
            temp = self.copy_empty()

        try: 
            temp.data[:] = function(self.data)
        except:
            temp.data[:] = np.vectorize(function)(self.data)
176
        
Ultimanet's avatar
Ultimanet committed
177
178
179
180
181
182
183
        temp.hermitian = False
        return temp
    
    def apply_generator(self, generator):
        self.set_local_data(generator(self.distributor.local_shape))
        self.hermitian = False
            
ultimanet's avatar
ultimanet committed
184
185
186
187
188
189
    def __str__(self):
        return self.data.__str__()
    
    def __repr__(self):
        return '<distributed_data_object>\n'+self.data.__repr__()
    
Ultimanet's avatar
Ultimanet committed
190
    def __eq__(self, other):
Ultimanet's avatar
Ultimanet committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        result = self.copy_empty(dtype = np.bool)
        ## Case 1: 'other' is a scalar
        ## -> make point-wise comparison
        if np.isscalar(other):
            result.set_local_data(self.get_local_data(copy = False) == other)
            return result        

        ## Case 2: 'other' is a numpy array or a distributed_data_object
        ## -> extract the local data and make point-wise comparison
        elif isinstance(other, np.ndarray) or\
        isinstance(other, distributed_data_object):
            temp_data = self.distributor.extract_local_data(other)
            result.set_local_data(self.get_local_data(copy=False) == temp_data)
            return result
        
        ## Case 3: 'other' is None
        elif other == None:
            return False
        
        ## Case 4: 'other' is something different
        ## -> make a numpy casting and make a recursion
        else:
            temp_other = np.array(other)
            return self.__eq__(temp_other)
            
            
        
    
    def equal(self, other):
Ultimanet's avatar
Ultimanet committed
220
221
222
223
224
225
226
227
228
        if other is None:
            return False
        try:
            assert(self.dtype == other.dtype)
            assert(self.shape == other.shape)
            assert(self.init_args == other.init_args)
            assert(self.init_kwargs == other.init_kwargs)
            assert(self.distribution_strategy == other.distribution_strategy)
            assert(np.all(self.data == other.data))
Ultimanet's avatar
Ultimanet committed
229
        except(AssertionError, AttributeError):
Ultimanet's avatar
Ultimanet committed
230
231
232
233
234
235
236
            return False
        else:
            return True
        

            
    
237
    def __pos__(self):
238
        temp_d2o = self.copy_empty()
239
240
241
        temp_d2o.set_local_data(data = self.get_local_data())
        return temp_d2o
        
ultimanet's avatar
ultimanet committed
242
    def __neg__(self):
243
        temp_d2o = self.copy_empty()
ultimanet's avatar
ultimanet committed
244
245
246
        temp_d2o.set_local_data(data = self.get_local_data().__neg__()) 
        return temp_d2o
    
247
    def __abs__(self):
Ultimanet's avatar
Ultimanet committed
248
249
250
251
252
253
254
255
256
257
258
259
        ## translate complex dtypes
        if self.dtype == np.complex64:
            new_dtype = np.float32
        elif self.dtype == np.complex128:
            new_dtype = np.float64
        elif self.dtype == np.complex:
            new_dtype = np.float
        elif issubclass(self.dtype, np.complexfloating):
            new_dtype = np.float
        else:
            new_dtype = self.dtype
        temp_d2o = self.copy_empty(dtype = new_dtype)
260
261
        temp_d2o.set_local_data(data = self.get_local_data().__abs__()) 
        return temp_d2o
ultimanet's avatar
ultimanet committed
262
263
            
    def __builtin_helper__(self, operator, other):
Ultimanet's avatar
Ultimanet committed
264
265
266
267
268
269
270
271
272
        ## Case 1: other is not a scalar
        if not (np.isscalar(other) or np.shape(other) == (1,)):
##            if self.shape != other.shape:            
##                raise AttributeError(about._errors.cstring(
##                    "ERROR: Shapes do not match!")) 
        
            ## extract the local data from the 'other' object
            temp_data = self.distributor.extract_local_data(other)
            temp_data = operator(temp_data)
Ultimanet's avatar
Ultimanet committed
273
            
ultimanet's avatar
ultimanet committed
274
275
        else:
            temp_data = operator(other)
Ultimanet's avatar
Ultimanet committed
276
277
278
        
        ## write the new data into a new distributed_data_object        
        temp_d2o = self.copy_empty()        
ultimanet's avatar
ultimanet committed
279
280
        temp_d2o.set_local_data(data=temp_data)
        return temp_d2o
Ultimanet's avatar
Ultimanet committed
281
282
    
    def __inplace_builtin_helper__(self, operator, other):
Ultimanet's avatar
Ultimanet committed
283
284
285
        if not (np.isscalar(other) or np.shape(other) == (1,)):        
            temp_data = self.distributor.extract_local_data(other)
            temp_data = operator(temp_data)
Ultimanet's avatar
Ultimanet committed
286
287
288
289
290
291
        else:
            temp_data = operator(other)
        self.set_local_data(data=temp_data)
        return self
        
    
ultimanet's avatar
ultimanet committed
292
293
294
295
296
    def __add__(self, other):
        return self.__builtin_helper__(self.get_local_data().__add__, other)

    def __radd__(self, other):
        return self.__builtin_helper__(self.get_local_data().__radd__, other)
Ultimanet's avatar
Ultimanet committed
297
298
299
300
301

    def __iadd__(self, other):
        return self.__inplace_builtin_helper__(self.get_local_data().__iadd__, 
                                               other)

ultimanet's avatar
ultimanet committed
302
303
304
305
306
307
308
    def __sub__(self, other):
        return self.__builtin_helper__(self.get_local_data().__sub__, other)
    
    def __rsub__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rsub__, other)
    
    def __isub__(self, other):
Ultimanet's avatar
Ultimanet committed
309
310
        return self.__inplace_builtin_helper__(self.get_local_data().__isub__, 
                                               other)
ultimanet's avatar
ultimanet committed
311
312
313
314
315
316
317
        
    def __div__(self, other):
        return self.__builtin_helper__(self.get_local_data().__div__, other)
    
    def __rdiv__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rdiv__, other)

Ultimanet's avatar
Ultimanet committed
318
319
320
321
    def __idiv__(self, other):
        return self.__inplace_builtin_helper__(self.get_local_data().__idiv__, 
                                               other)

ultimanet's avatar
ultimanet committed
322
    def __floordiv__(self, other):
Ultimanet's avatar
Ultimanet committed
323
324
        return self.__builtin_helper__(self.get_local_data().__floordiv__, 
                                       other)    
ultimanet's avatar
ultimanet committed
325
    def __rfloordiv__(self, other):
Ultimanet's avatar
Ultimanet committed
326
327
328
329
330
        return self.__builtin_helper__(self.get_local_data().__rfloordiv__, 
                                       other)
    def __ifloordiv__(self, other):
        return self.__inplace_builtin_helper__(
                    self.get_local_data().__ifloordiv__, other)
ultimanet's avatar
ultimanet committed
331
332
333
334
335
336
337
338
    
    def __mul__(self, other):
        return self.__builtin_helper__(self.get_local_data().__mul__, other)
    
    def __rmul__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rmul__, other)

    def __imul__(self, other):
Ultimanet's avatar
Ultimanet committed
339
340
341
        return self.__inplace_builtin_helper__(self.get_local_data().__imul__, 
                                               other)

ultimanet's avatar
ultimanet committed
342
343
344
345
346
347
348
    def __pow__(self, other):
        return self.__builtin_helper__(self.get_local_data().__pow__, other)
 
    def __rpow__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rpow__, other)

    def __ipow__(self, other):
Ultimanet's avatar
Ultimanet committed
349
350
351
        return self.__inplace_builtin_helper__(self.get_local_data().__ipow__, 
                                               other)
   
352
353
    def __len__(self):
        return self.shape[0]
354
    
355
356
357
    def dim(self):
        return np.prod(self.shape)
        
358
359
360
361
362
363
364
365
    def vdot(self, other):
        if isinstance(other, distributed_data_object):        
            other = other.get_local_data()
        local_vdot = np.vdot(self.get_local_data(), other)
        local_vdot_list = self.distributor._allgather(local_vdot)
        global_vdot = np.sum(local_vdot_list)
        return global_vdot
            
Ultimanet's avatar
Ultimanet committed
366

367
    
ultimanet's avatar
ultimanet committed
368
    def __getitem__(self, key):
Ultimanet's avatar
Ultimanet committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
        ## Case 1: key is a boolean array.
        ## -> take the local data portion from key, use this for data 
        ## extraction, and then merge the result in a flat numpy array
        if isinstance(key, np.ndarray):
            found = 'ndarray'
            found_boolean = (key.dtype.type == np.bool)
        elif isinstance(key, distributed_data_object):
            found = 'd2o'
            found_boolean = (key.dtype == np.bool)
        else:
            found = 'other'
                
        if (found == 'ndarray' or found == 'd2o') and found_boolean == True:
            ## extract the data of local relevance
            local_bool_array = self.distributor.extract_local_data(key)
            local_results = self.get_local_data(copy=False)[local_bool_array]
            global_results = self.distributor._allgather(local_results)
            global_results = np.concatenate(global_results)
            return global_results            
            
        else:
            return self.get_data(key)
ultimanet's avatar
ultimanet committed
391
392
393
394
    
    def __setitem__(self, key, data):
        self.set_data(data, key)
        
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    def _minmaxhelper(self, function, **kwargs):
        local = function(self.data, **kwargs)
        local_list = self.distributor._allgather(local)
        global_ = function(local_list, axis=0)
        return global_
        
    def amin(self, **kwargs):
        return self._minmaxhelper(np.amin, **kwargs)

    def nanmin(self, **kwargs):
        return self._minmaxhelper(np.nanmin, **kwargs)
        
    def amax(self, **kwargs):
        return self._minmaxhelper(np.amax, **kwargs)
    
    def nanmax(self, **kwargs):
        return self._minmaxhelper(np.nanmax, **kwargs)
Ultimanet's avatar
Ultimanet committed
412
    
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    def mean(self, power=1):
        ## compute the local means and the weights for the mean-mean. 
        local_mean = np.mean(self.data**power)
        local_weight = np.prod(self.data.shape)
        ## collect the local means and cast the result to a ndarray
        local_mean_weight_list = self.distributor._allgather((local_mean, 
                                                              local_weight))
        local_mean_weight_list =np.array(local_mean_weight_list)   
        ## compute the denominator for the weighted mean-mean                                                           
        global_weight = np.sum(local_mean_weight_list[:,1])
        ## compute the numerator
        numerator = np.sum(local_mean_weight_list[:,0]*\
            local_mean_weight_list[:,1])
        global_mean = numerator/global_weight
        return global_mean

    def var(self):
        mean_of_the_square = self.mean(power=2)
        square_of_the_mean = self.mean()**2
        return mean_of_the_square - square_of_the_mean
    
    def std(self):
        return np.sqrt(self.var())
        
    def _argmin_argmax_flat_helper(self, function):
        local_argmin = function(self.data)
        local_argmin_value = self.data[np.unravel_index(local_argmin, 
                                                        self.data.shape)]
        globalized_local_argmin = self.distributor.globalize_flat_index(local_argmin)                                                       
        local_argmin_list = self.distributor._allgather((local_argmin_value, 
                                                         globalized_local_argmin))
        local_argmin_list = np.array(local_argmin_list, dtype=[('value', int),
                                                               ('index', int)])    
        return local_argmin_list
        
    def argmin_flat(self):
        local_argmin = np.argmin(self.data)
        local_argmin_value = self.data[np.unravel_index(local_argmin, 
                                                        self.data.shape)]
        globalized_local_argmin = self.distributor.globalize_flat_index(local_argmin)                                                       
        local_argmin_list = self.distributor._allgather((local_argmin_value, 
                                                         globalized_local_argmin))
        local_argmin_list = np.array(local_argmin_list, dtype=[('value', int),
                                                               ('index', int)])    
        local_argmin_list = np.sort(local_argmin_list, order=['value', 'index'])        
        return local_argmin_list[0][1]
    
    def argmax_flat(self):
        local_argmax = np.argmax(self.data)
        local_argmax_value = -self.data[np.unravel_index(local_argmax, 
                                                        self.data.shape)]
        globalized_local_argmax = self.distributor.globalize_flat_index(local_argmax)                                                       
        local_argmax_list = self.distributor._allgather((local_argmax_value, 
                                                         globalized_local_argmax))
        local_argmax_list = np.array(local_argmax_list, dtype=[('value', int),
                                                               ('index', int)])         
        return local_argmax_list[0][1]
        

    def argmin(self):    
        return np.unravel_index(self.argmin_flat(), self.shape)
    
    def argmax(self):
        return np.unravel_index(self.argmax_flat(), self.shape)
    
    def conjugate(self):
        temp_d2o = self.copy_empty()
        temp_data = np.conj(self.get_local_data())
        temp_d2o.set_local_data(temp_data)
        return temp_d2o

    
    def conj(self):
        return self.conjugate()      
        
    def median(self):
Ultimanet's avatar
Ultimanet committed
489
        about.warnings.cprint(\
490
491
492
493
            "WARNING: The current implementation of median is very expensive!")
        median = np.median(self.get_full_data())
        return median
        
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    def iscomplex(self):
        temp_d2o = self.copy_empty(dtype=bool)
        temp_d2o.set_local_data(np.iscomplex(self.data))
        return temp_d2o
    
    def isreal(self):
        temp_d2o = self.copy_empty(dtype=bool)
        temp_d2o.set_local_data(np.isreal(self.data))
        return temp_d2o
    
    def is_completely_real(self):
        local_realiness = np.all(self.isreal())
        global_realiness = self.distributor._allgather(local_realiness)
        return np.all(global_realiness)
    
Ultimanet's avatar
Ultimanet committed
509
    def set_local_data(self, data, hermitian=False, copy=False):
ultimanet's avatar
ultimanet committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        """
            Stores data directly in the local data attribute. No distribution 
            is done. The shape of the data must fit the local data attributes
            shape.

            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be stored in the local data attribute.
            
            Returns
            -------
            None
        
        """
Ultimanet's avatar
Ultimanet committed
525
526
        self.hermitian = hermitian
        self.data = np.array(data, dtype=self.dtype, copy=copy, order='C')
ultimanet's avatar
ultimanet committed
527
    
Ultimanet's avatar
Ultimanet committed
528
    def set_data(self, data, key, hermitian=False, *args, **kwargs):
ultimanet's avatar
ultimanet committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
        """
            Stores the supplied data in the region which is specified by key. 
            The data is distributed according to the distribution strategy. If
            the individual nodes get different key-arguments. Their data is 
            processed one-by-one.
            
            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be distributed.
            key : int, slice, tuple of int or slice
                The key is the object which specifies the region, where data 
                will be stored in.                
            
            Returns
            -------
            None
        
        """
Ultimanet's avatar
Ultimanet committed
548
        self.hermitian = hermitian
ultimanet's avatar
ultimanet committed
549
        (slices, sliceified) = self.__sliceify__(key)        
Ultimanet's avatar
Ultimanet committed
550
551
552
553
        self.distributor.disperse_data(data=self.data, 
                        to_slices = slices,
                        data_update = self.__enfold__(data, sliceified), 
                        *args, **kwargs)        
ultimanet's avatar
ultimanet committed
554
    
Ultimanet's avatar
Ultimanet committed
555
    def set_full_data(self, data, hermitian=False, **kwargs):
ultimanet's avatar
ultimanet committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        """
            Distributes the supplied data to the nodes. The shape of data must 
            match the shape of the distributed_data_object.
            
            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be distributed.
            
            Notes
            -----
            set_full_data(foo) is equivalent to set_data(foo,slice(None)) but 
            faster.
        
            Returns
            -------
            None
        
        """
Ultimanet's avatar
Ultimanet committed
575
        self.hermitian = hermitian
576
        self.data = self.distributor.distribute_data(data=data, **kwargs)
ultimanet's avatar
ultimanet committed
577
578
    

Ultimanet's avatar
Ultimanet committed
579
    def get_local_data(self, key=(slice(None),), copy=True):
ultimanet's avatar
ultimanet committed
580
581
582
583
584
585
586
587
588
589
590
591
592
        """
            Loads data directly from the local data attribute. No consolidation 
            is done. 

            Parameters
            ----------
            key : int, slice, tuple of int or slice
                The key which will be used to access the data. 
            
            Returns
            -------
            self.data[key] : numpy.ndarray
        
Ultimanet's avatar
Ultimanet committed
593
        """
Ultimanet's avatar
Ultimanet committed
594
595
596
597
        if copy == True:
            return self.data[key]        
        if copy == False:
            return self.data
ultimanet's avatar
ultimanet committed
598
        
599
    def get_data(self, key, **kwargs):
ultimanet's avatar
ultimanet committed
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        """
            Loads data from the region which is specified by key. The data is 
            consolidated according to the distribution strategy. If the 
            individual nodes get different key-arguments, they get individual
            data. 
            
            Parameters
            ----------
        
            key : int, slice, tuple of int or slice
                The key is the object which specifies the region, where data 
                will be loaded from.                 
            
            Returns
            -------
            global_data[key] : numpy.ndarray
        
        """
618
619
        (slices, sliceified) = self.__sliceify__(key)
        result = self.distributor.collect_data(self.data, slices, **kwargs)        
ultimanet's avatar
ultimanet committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
        return self.__defold__(result, sliceified)
        
    
    
    def get_full_data(self, target_rank='all'):
        """
            Fully consolidates the distributed data. 
            
            Parameters
            ----------
            target_rank : 'all' (default), int *optional*
                If only one node should recieve the full data, it can be 
                specified here.
            
            Notes
            -----
            get_full_data() is equivalent to get_data(slice(None)) but 
            faster.
        
            Returns
            -------
            None
        """

        return self.distributor.consolidate_data(self.data, target_rank)

Ultimanet's avatar
Ultimanet committed
646
647
648
649
650
651
652
653
    def inject(self, to_slices=(slice(None),), data=None, 
               from_slices=(slice(None),)):
        if data == None:
            return self
        
        self.distributor.inject(self.data, to_slices, data, from_slices)
        
        
ultimanet's avatar
ultimanet committed
654
655
656
657
658
659
    def _get_distributor(self, distribution_strategy):
        '''
            Comments:
              - The distributor's get_data and set_data functions MUST be 
                supplied with a tuple of slice objects. In case that there was 
                a direct integer involved, the unfolding will be done by the
660
                helper functions __sliceify__, __enfold__ and __defold__.
ultimanet's avatar
ultimanet committed
661
662
663
664
665
666
667
        '''
        
        distributor_dict={
            'fftw':     _fftw_distributor,
            'not':      _not_distributor
        }
        if not distributor_dict.has_key(distribution_strategy):
Ultimanet's avatar
Ultimanet committed
668
            raise TypeError(about._errors.cstring("ERROR: Unknown distribution strategy supplied."))
ultimanet's avatar
ultimanet committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
        return distributor_dict[distribution_strategy]
      
    def save(self, alias, path=None, overwriteQ=True):
        
        """
            Saves a distributed_data_object to disk utilizing h5py.
            
            Parameters
            ----------
            alias : string
                The name for the dataset which is saved within the hdf5 file.
         
            path : string *optional*
                The path to the hdf5 file. If no path is given, the alias is 
                taken as filename in the current path.
            
            overwriteQ : Boolean *optional*
                Specifies whether a dataset may be overwritten if it is already
                present in the given hdf5 file or not.
        """
        self.distributor.save_data(self.data, alias, path, overwriteQ)

    def load(self, alias, path=None):
        """
            Loads a distributed_data_object from disk utilizing h5py.
            
            Parameters
            ----------
            alias : string
                The name of the dataset which is loaded from the hdf5 file.
 
            path : string *optional*
                The path to the hdf5 file. If no path is given, the alias is 
                taken as filename in the current path.
        """
        self.data = self.distributor.load_data(alias, path)
           
    def __sliceify__(self, inp):
        sliceified = []
        result = []
        if isinstance(inp, tuple):
            x = inp
Ultimanet's avatar
Ultimanet committed
711
712
        elif isinstance(inp, list):
            x = tuple(inp)
ultimanet's avatar
ultimanet committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
        else:
            x = (inp, )
        
        for i in range(len(x)):
            if isinstance(x[i], slice):
                result += [x[i], ]
                sliceified += [False, ]
            else:
                result += [slice(x[i], x[i]+1), ]
                sliceified += [True, ]
    
        return (tuple(result), sliceified)
                
                
    def __enfold__(self, in_data, sliceified):
        data = np.array(in_data, copy=False)    
        temp_shape = ()
        j=0
        for i in sliceified:
            if i == True:
                temp_shape += (1,)
            else:
                temp_shape += (data.shape[j],)
                j += 1
        ## take into account that the sliceified tuple may be too short, because 
        ## of a non-exaustive list of slices
        for i in range(len(data.shape)-j):
            temp_shape += (data.shape[j],)
            j += 1
Ultimanet's avatar
Ultimanet committed
742
        
ultimanet's avatar
ultimanet committed
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
        return data.reshape(temp_shape)
    
    def __defold__(self, data, sliceified):
        temp_slice = ()
        for i in sliceified:
            if i == True:
                temp_slice += (0,)
            else:
                temp_slice += (slice(None),)
        return data[temp_slice]

    

   
class _fftw_distributor(object):
758
759
    def __init__(self, global_data=None, global_shape=None, dtype=None, 
                 comm=MPI.COMM_WORLD, alias=None, path=None):
ultimanet's avatar
ultimanet committed
760
761
762
763
764
765
766
767
768
769
770
        
        if alias != None:
            file_path = path if path != None else alias 
            if found['h5py_parallel']:
                f = h5py.File(file_path, 'r', driver='mpio', comm=comm)
            else:
                f= h5py.File(file_path, 'r')        
            dset = f[alias]        

        
        if comm.rank == 0:        
Ultimanet's avatar
Ultimanet committed
771
            ## Case 1: hdf5 path supplied
ultimanet's avatar
ultimanet committed
772
773
            if alias != None:
                self.global_shape = dset.shape
Ultimanet's avatar
Ultimanet committed
774
775
776
777
            ## Case 2: no hdf5 path supplied
            else:           
                ## subcase 1: input data is scalar or None
                if global_data == None or np.isscalar(global_data):
ultimanet's avatar
ultimanet committed
778
                    if global_shape == None:
Ultimanet's avatar
Ultimanet committed
779
                        raise TypeError(about._errors.\
Ultimanet's avatar
Ultimanet committed
780
                cstring("ERROR: Neither non-scalar data nor shape supplied!"))
ultimanet's avatar
ultimanet committed
781
782
                    else:
                        self.global_shape = global_shape
Ultimanet's avatar
Ultimanet committed
783
784
                ## subcase 2: input data is non-scalar 
                ## -> Take the shape of the input data
ultimanet's avatar
ultimanet committed
785
786
787
788
                else:
                    self.global_shape = global_data.shape
        else:
            self.global_shape = None
Ultimanet's avatar
Ultimanet committed
789
            
ultimanet's avatar
ultimanet committed
790
791
792
793
794
795
796
797
798
799
800
801
        self.global_shape = comm.bcast(self.global_shape, root = 0)
        self.global_shape = tuple(self.global_shape)
        
        if comm.rank == 0:        
            if alias != None:
                self.dtype = dset.dtype.type
            else:    
                if dtype != None:        
                    self.dtype = dtype
                elif global_data != None:
                    self.dtype = np.array(global_data).dtype.type
                else:
Ultimanet's avatar
Ultimanet committed
802
                    raise TypeError(about._errors.\
803
804
                    cstring("ERROR: Failed setting datatype. Neither data, "+\
                     "nor datatype supplied."))
ultimanet's avatar
ultimanet committed
805
806
807
808
809
810
811
812
813
        else:
            self.dtype=None
        self.dtype = comm.bcast(self.dtype, root=0)
        if alias != None:        
            f.close()        
        
        self._my_dtype_converter = dtype_converter()
        
        if not self._my_dtype_converter.known_np_Q(self.dtype):
Ultimanet's avatar
Ultimanet committed
814
            raise TypeError(about._errors.cstring(\
815
            "ERROR: The datatype "+str(self.dtype)+" is not known to mpi4py."))
ultimanet's avatar
ultimanet committed
816
817
818
819
820
821
822
823
824
825

        self.mpi_dtype  = self._my_dtype_converter.to_mpi(self.dtype)
        
        self._local_size = pyfftw.local_size(self.global_shape)
        self.local_start = self._local_size[2]
        self.local_end = self.local_start + self._local_size[1]
        self.local_length = self.local_end-self.local_start        
        self.local_shape = (self.local_length,) + tuple(self.global_shape[1:])
        self.local_dim = np.product(self.local_shape)
        self.local_dim_list = np.empty(comm.size, dtype=np.int)
826
827
        comm.Allgather([np.array(self.local_dim,dtype=np.int), MPI.INT],\
            [self.local_dim_list, MPI.INT])
ultimanet's avatar
ultimanet committed
828
829
        self.local_dim_offset = np.sum(self.local_dim_list[0:comm.rank])
        
830
831
832
        self.local_slice = np.array([self.local_start, self.local_end,\
            self.local_length, self.local_dim, self.local_dim_offset],\
            dtype=np.int)
ultimanet's avatar
ultimanet committed
833
834
835
        ## collect all local_slices 
        ## [start, stop, length=stop-start, dimension, dimension_offset]
        self.all_local_slices = np.empty((comm.size,5),dtype=np.int)
836
837
        comm.Allgather([np.array((self.local_slice,),dtype=np.int), MPI.INT],\
            [self.all_local_slices, MPI.INT])
ultimanet's avatar
ultimanet committed
838
        
839
        self.comm = comm
ultimanet's avatar
ultimanet committed
840
        
841
842
843
844
845
846
    def globalize_flat_index(self, index):
        return int(index)+self.local_dim_offset
        
    def globalize_index(self, index):
        index = np.array(index, dtype=np.int).flatten()
        if index.shape != (len(self.global_shape),):
Ultimanet's avatar
Ultimanet committed
847
            raise TypeError(about._errors.cstring("ERROR: Length\
848
849
850
851
852
853
854
855
856
                of index tuple does not match the array's shape!"))                 
        globalized_index = index
        globalized_index[0] = index[0] + self.local_start
        ## ensure that the globalized index list is within the bounds
        global_index_memory = globalized_index
        globalized_index = np.clip(globalized_index, 
                                   -np.array(self.global_shape),
                                    np.array(self.global_shape)-1)
        if np.any(global_index_memory != globalized_index):
Ultimanet's avatar
Ultimanet committed
857
            about.warnings.cprint("WARNING: Indices were clipped!")
858
859
860
861
862
863
864
865
866
867
868
        globalized_index = tuple(globalized_index)
        return globalized_index
    
    def _allgather(self, thing, comm=None):
        if comm == None:
            comm = self.comm            
        gathered_things = comm.allgather(thing)
        return gathered_things
    
    def distribute_data(self, data=None, comm = None, alias=None,
                        path=None, **kwargs):
ultimanet's avatar
ultimanet committed
869
870
871
872
873
        '''
        distribute data checks 
        - whether the data is located on all nodes or only on node 0
        - that the shape of 'data' matches the global_shape
        '''
874
875
        if comm == None:
            comm = self.comm            
876
877
878
879
        rank = comm.Get_rank()
        size = comm.Get_size()        
        local_data_available_Q = np.array((int(data != None), ))
        data_available_Q = np.empty(size,dtype=int)
880
881
        comm.Allgather([local_data_available_Q, MPI.INT], 
                       [data_available_Q, MPI.INT])        
882
883
        
        if data_available_Q[0]==False and found['h5py']:
ultimanet's avatar
ultimanet committed
884
885
886
887
888
889
890
            try: 
                file_path = path if path != None else alias 
                if found['h5py_parallel']:
                    f = h5py.File(file_path, 'r', driver='mpio', comm=comm)
                else:
                    f= h5py.File(file_path, 'r')        
                dset = f[alias]
891
892
                if dset.shape == self.global_shape and \
                 dset.dtype.type == self.dtype:
ultimanet's avatar
ultimanet committed
893
894
895
896
                    temp_data = dset[self.local_start:self.local_end]
                    f.close()
                    return temp_data
                else:
Ultimanet's avatar
Ultimanet committed
897
                    raise TypeError(about._errors.cstring("ERROR: \
898
                    Input data has the wrong shape or wrong dtype!"))                 
ultimanet's avatar
ultimanet committed
899
900
901
            except(IOError, AttributeError):
                pass
            
902
        if np.all(data_available_Q==False):
Ultimanet's avatar
Ultimanet committed
903
            return np.empty(self.local_shape, dtype=self.dtype, order='C')
ultimanet's avatar
ultimanet committed
904
        ## if all nodes got data, we assume that it is the right data and 
905
906
        ## store it individually. If not, take the data on node 0 and scatter 
        ## it...
ultimanet's avatar
ultimanet committed
907
        if np.all(data_available_Q):
908
909
            return data[self.local_start:self.local_end].astype(self.dtype,\
                copy=False)    
910
911
        ## ... but only if node 0 has actually data!
        elif data_available_Q[0] == False:# or np.all(data_available_Q==False):
Ultimanet's avatar
Ultimanet committed
912
            return np.empty(self.local_shape, dtype=self.dtype, order='C')
913
        
ultimanet's avatar
ultimanet committed
914
915
916
917
918
        else:
            if data == None:
                data = np.empty(self.global_shape)            
            if rank == 0:
                if np.all(data.shape != self.global_shape):
Ultimanet's avatar
Ultimanet committed
919
                    raise TypeError(about._errors.cstring(\
920
                        "ERROR: Input data has the wrong shape!"))
ultimanet's avatar
ultimanet committed
921
            ## Scatter the data!            
Ultimanet's avatar
Ultimanet committed
922
            _scattered_data = np.empty(self.local_shape, dtype = self.dtype)
ultimanet's avatar
ultimanet committed
923
924
            _dim_list = self.all_local_slices[:,3]
            _dim_offset_list = self.all_local_slices[:,4]
925
926
            comm.Scatterv([data, _dim_list, _dim_offset_list, self.mpi_dtype],\
                [_scattered_data, self.mpi_dtype], root=0)
ultimanet's avatar
ultimanet committed
927
928
929
            return _scattered_data
        return None
    
Ultimanet's avatar
Ultimanet committed
930
931
    def _disperse_data_primitive(self, data, to_slices, data_update, 
                                 from_slices, source_rank='all', comm=None):
932
933
        if comm == None:
            comm = self.comm            
934
935
        ## compute the part of the slice which is relevant for the 
        ## individual node      
ultimanet's avatar
ultimanet committed
936
        localized_start, localized_stop = self._backshift_and_decycle(
Ultimanet's avatar
Ultimanet committed
937
            to_slices[0], self.local_start, self.local_end,\
938
939
                self.global_shape[0])
        local_slice = (slice(localized_start, localized_stop,\
Ultimanet's avatar
Ultimanet committed
940
                        to_slices[0].step),) + to_slices[1:]
ultimanet's avatar
ultimanet committed
941
942
943
944
945
        
        ## compute the parameter sets and list for the data splitting
        local_slice_shape = data[local_slice].shape        
        local_affected_data_length = local_slice_shape[0]
        local_affected_data_length_list=np.empty(comm.size, dtype=np.int)        
946
947
948
949
950
        comm.Allgather(\
            [np.array(local_affected_data_length, dtype=np.int), MPI.INT],\
            [local_affected_data_length_list, MPI.INT])        
        local_affected_data_length_offset_list = np.append([0],\
                            np.cumsum(local_affected_data_length_list)[:-1])
ultimanet's avatar
ultimanet committed
951
952
953
954
955
956
957
958
        
        
        if source_rank == 'all':
            ## only take the relevant part out of data_update and plug it into 
            ## data[local_slice]
            r = comm.rank
            o = local_affected_data_length_offset_list
            l = local_affected_data_length
Ultimanet's avatar
Ultimanet committed
959
960
961
962
963
964
            
            ## if the from_slices object is not None, i.e. only a part from
            ## the data source is used, form the update_slice accordingly
            if from_slices == None:
                update_slice = (slice(o[r], o[r]+l),)
            else:
Ultimanet's avatar
Ultimanet committed
965
                    
Ultimanet's avatar
Ultimanet committed
966
967
968
                f_step = from_slices[0].step
                if f_step == None:
                    f_step = 1
Ultimanet's avatar
Ultimanet committed
969
                    
Ultimanet's avatar
Ultimanet committed
970
                f_direction = np.sign(f_step)
Ultimanet's avatar
Ultimanet committed
971
972
973
974
975
976
977
978
979
980
981
982
983

                f_relative_start = from_slices[0].start
                if f_relative_start != None:
                    f_start = f_relative_start + f_direction*o[r]
                else:
                    f_start = None
                    f_relative_start = 0
                    
                f_stop = f_relative_start + f_direction*(o[r]+l*np.abs(f_step))
                if f_stop < 0:
                    f_stop = None


Ultimanet's avatar
Ultimanet committed
984
                ## combine the slicing for the first dimension 
Ultimanet's avatar
Ultimanet committed
985
986
                update_slice = (slice(f_start,
                                      f_stop,
Ultimanet's avatar
Ultimanet committed
987
988
989
990
                                      f_step),
                                )
                ## add the rest of the from_slicing
                update_slice += from_slices[1:]
Ultimanet's avatar
Ultimanet committed
991

992
993
            data[local_slice] = np.array(data_update[update_slice],\
                                    copy=False).astype(self.dtype)
ultimanet's avatar
ultimanet committed
994
995
996
997
            
        else:
            ## Scatterv the relevant part from the source_rank to the others 
            ## and plug it into data[local_slice]
998
999
1000
            
            ## if the first slice object has a negative step size, the ordering 
            ## of the Scatterv function must be reversed         
Ultimanet's avatar
Ultimanet committed
1001
            order = to_slices[0].step
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
            if order == None:
                order = 1
            else:
                order = np.sign(order)

            local_affected_data_dim_list = \
                np.array(local_affected_data_length_list) *\
                    np.product(local_slice_shape[1:])                    

            local_affected_data_dim_offset_list = np.append([0],\
                np.cumsum(local_affected_data_dim_list[::order])[:-1])[::order]
                
            local_dispersed_data = np.zeros(local_slice_shape,\
                dtype=self.dtype)
            comm.Scatterv(\
Ultimanet's avatar
Ultimanet committed
1017
1018
                [np.array(data_update[from_slices],copy=False).\
                                                        astype(self.dtype),\
1019
1020
                    local_affected_data_dim_list,\
                    local_affected_data_dim_offset_list, self.mpi_dtype],
ultimanet's avatar
ultimanet committed
1021
1022
1023
1024
1025
1026
1027
                          [local_dispersed_data, self.mpi_dtype], 
                          root=source_rank)                            
            data[local_slice] = local_dispersed_data
        return None
        
    
    
Ultimanet's avatar
Ultimanet committed
1028
1029
    def disperse_data(self, data, to_slices, data_update, from_slices=None,
                      comm=None, **kwargs):
1030
1031
        if comm == None:
            comm = self.comm            
Ultimanet's avatar
Ultimanet committed
1032
        to_slices_list = comm.allgather(to_slices)
ultimanet's avatar
ultimanet committed
1033
        ## check if all slices are the same. 
Ultimanet's avatar
Ultimanet committed
1034
        if all(x == to_slices_list[0] for x in to_slices_list):
ultimanet's avatar
ultimanet committed
1035
1036
            ## in this case, the _disperse_data_primitive can simply be called 
            ##with target_rank = 'all'
Ultimanet's avatar
Ultimanet committed
1037
1038
1039
1040
1041
1042
            self._disperse_data_primitive(data = data, 
                                          to_slices = to_slices,
                                          data_update=data_update,
                                          from_slices=from_slices, 
                                          source_rank='all', 
                                          comm=comm)
1043
1044
        ## if the different nodes got different slices, disperse the data 
        ## individually
ultimanet's avatar
ultimanet committed
1045
1046
        else:
            i = 0        
Ultimanet's avatar
Ultimanet committed
1047
            for temp_to_slices in to_slices_list:
ultimanet's avatar
ultimanet committed
1048
                ## make the collect_data call on all nodes            
Ultimanet's avatar
Ultimanet committed
1049
1050
1051
1052
1053
1054
                self._disperse_data_primitive(data=data,
                                              to_slices=temp_to_slices,
                                              data_update=data_update,
                                              from_slices=from_slices,
                                              source_rank=i, 
                                              comm=comm)
ultimanet's avatar
ultimanet committed
1055
1056
1057
                i += 1
                 
        
1058
1059
1060
1061
    def _collect_data_primitive(self, data, slice_objects, target_rank='all', comm=None):
        if comm == None:
            comm = self.comm            
            
ultimanet's avatar
ultimanet committed
1062
        localized_start, localized_stop = self._backshift_and_decycle(
1063
            slice_objects[0], self.local_start, self.local_end, self.global_shape[0])
ultimanet's avatar
ultimanet committed
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
        local_slice = (slice(localized_start,localized_stop,slice_objects[0].step),)+slice_objects[1:]
        local_collected_data = np.ascontiguousarray(data[local_slice])

        local_collected_data_length = local_collected_data.shape[0]
        local_collected_data_length_list=np.empty(comm.size, dtype=np.int)        
        comm.Allgather([np.array(local_collected_data_length, dtype=np.int), MPI.INT], [local_collected_data_length_list, MPI.INT])        
             
        collected_data_length = np.sum(local_collected_data_length_list) 
        collected_data_shape = (collected_data_length,)+local_collected_data.shape[1:]
        local_collected_data_dim_list= np.array(local_collected_data_length_list) * np.product(local_collected_data.shape[1:])        
        
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
        ## if the first slice object has a negative step size, the ordering 
        ## of the Gatherv functions must be reversed         
        order = slice_objects[0].step
        if order == None:
            order = 1
        else:
            order = np.sign(order)
            
        local_collected_data_dim_offset_list = np.append([0],np.cumsum(local_collected_data_dim_list[::order])[:-1])[::order]

        local_collected_data_dim_offset_list = local_collected_data_dim_offset_list
ultimanet's avatar
ultimanet committed
1086
        collected_data = np.empty(collected_data_shape, dtype=self.dtype)
1087
        
ultimanet's avatar
ultimanet committed
1088
1089
1090
1091
1092
1093
1094
1095
1096

        if target_rank == 'all':
            comm.Allgatherv([local_collected_data, self.mpi_dtype], 
                         [collected_data, local_collected_data_dim_list, local_collected_data_dim_offset_list, self.mpi_dtype])                
        else:
            comm.Gatherv([local_collected_data, self.mpi_dtype], 
                         [collected_data, local_collected_data_dim_list, local_collected_data_dim_offset_list, self.mpi_dtype], root=target_rank)                            
        return collected_data

1097
1098
1099
    def collect_data(self, data, slice_objects, comm=None, **kwargs):
        if comm == None:
            comm = self.comm                    
ultimanet's avatar
ultimanet committed
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
        slice_objects_list = comm.allgather(slice_objects)
        ## check if all slices are the same. 
        if all(x == slice_objects_list[0] for x in slice_objects_list):
            ## in this case, the _collect_data_primitive can simply be called 
            ##with target_rank = 'all'
            return self._collect_data_primitive(data=data, slice_objects=slice_objects, target_rank='all', comm=comm)
        
        ## if the different nodes got different slices, collect the data individually
        i = 0        
        for temp_slices in slice_objects_list:
            ## make the collect_data call on all nodes            
            temp_data = self._collect_data_primitive(data=data, slice_objects=temp_slices, target_rank=i, comm=comm)
            ## save the result only on the pulling node            
            if comm.rank == i:
                individual_data = temp_data
            i += 1
        return individual_data
        
    
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    def _backshift_and_decycle(self, slice_object, shifted_start, shifted_stop, global_length):
        ## Crop the start value
        if slice_object.start > global_length-1:
            slice_object = slice(global_length-1, slice_object.stop,
                                 slice_object.step)
                                 
        ## Reformulate negative indices                                  
        if slice_object.start < 0 and slice_object.start != None:
            temp_start = slice_object.start + global_length
            if temp_start < 0:
Ultimanet's avatar
Ultimanet committed
1129
                raise ValueError(about._errors.cstring(\
1130
1131
1132
1133
1134
1135
1136
                "ERROR: Index is out of bounds!"))
            slice_object = slice(temp_start, slice_object.stop,\
            slice_object.step) 

        if slice_object.stop < 0 and slice_object.stop != None:
            temp_stop = slice_object.stop + global_length
            if temp_stop < 0:
Ultimanet's avatar
Ultimanet committed
1137
                raise ValueError(about._errors.cstring(\
1138
1139
1140
1141
1142
                "ERROR: Index is out of bounds!"))
            slice_object = slice(slice_object.start, temp_stop,\
            slice_object.step) 
                
        ## initialize the step
ultimanet's avatar
ultimanet committed
1143
1144
1145
1146
        if slice_object.step == None:
            step = 1
        else:
            step = slice_object.step
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
        
        if step > 0:
            shift = shifted_start
            ## calculate the start index
            if slice_object.start == None:
                local_start = (-shift)%step ## step size compensation
            else:
                local_start = slice_object.start - shift
                ## if the local_start is negative, pull it up to zero
                local_start = local_start%step if local_start < 0 else local_start
            ## calculate the stop index
            if slice_object.stop == None:
                local_stop = None
            else:
                local_stop = slice_object.stop - shift
                ## if local_stop is negative, pull it up to zero
                local_stop = 0 if local_stop < 0 else local_stop
                
        else: # if step < 0
            step = -step
            local_length = shifted_stop - shifted_start
            ## calculate the start index. (Here, local_start > local_stop!)
            if slice_object.start == None:
                local_start = (local_length-1) -\
                    (global_length-shifted_stop)%step #stepsize compensation
            else:
                local_start = slice_object.start - shifted_start
                ## if the local_start is negative, pull it up to zero
                local_start = 0 if local_start < 0 else local_start                
                ## if the local_start is greater than the local length, pull
                ## it down 
                if local_start > local_length-1:
                    overhead = local_start - (local_length-1)
                    overhead = overhead - overhead%(-step)
                    local_start = local_start - overhead
            ## calculate the stop index
            if slice_object.stop == None:
                local_stop = None
            else:
                local_stop = slice_object.stop - shifted_start
                ## if local_stop is negative, pull it up to zero
                local_stop = 0 if local_stop < 0 else local_stop    
1189
        ## Note: if start or stop are greater than the array length,
ultimanet's avatar
ultimanet committed
1190
1191
1192
        ## numpy will automatically cut the index value down into the 
        ## array's range 
        return local_start, local_stop        
1193
    
Ultimanet's avatar
Ultimanet committed
1194
1195
    def inject(self, data, to_slices, data_update, from_slices, comm=None, 
               **kwargs):
Ultimanet's avatar
Ultimanet committed
1196
        ## check if to_key and from_key are completely built of slices 
Ultimanet's avatar
Ultimanet committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
        if not np.all(
            np.vectorize(lambda x: isinstance(x, slice))(to_slices)):
            raise ValueError(about._errors.cstring(
            "ERROR: The to_slices argument must be a list or tuple of slices!")
            )

        if not np.all(
            np.vectorize(lambda x: isinstance(x, slice))(from_slices)):
            raise ValueError(about._errors.cstring(
            "ERROR: The from_slices argument must be a list or tuple of slices!")
            )
            
        to_slices = tuple(to_slices)
        from_slices = tuple(from_slices)
        self.disperse_data(data = data, 
                           to_slices = to_slices,
                           data_update = data_update,
                           from_slices = from_slices,
                           comm=comm,
                           **kwargs)
Ultimanet's avatar
Ultimanet committed
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311

    def extract_local_data(self, data_object):
        ## if data_object is not a ndarray or a d2o, cast it to a ndarray
        if not (isinstance(data_object, np.ndarray) or 
                isinstance(data_object, distributed_data_object)):
            data_object = np.array(data_object)
        ## check if the shapes are remotely compatible, reshape if possible
        ## and determine which dimensions match only via broadcasting
        try:
            (data_object, matching_dimensions) = \
                self._reshape_foreign_data(data_object)
        ## if the shape-casting fails, try to fix things via locall data
        ## matching
        except(ValueError):
            ## Check if all the local shapes match the supplied data
            local_matchQ = (self.local_shape == data_object.shape)
            global_matchQ = self._allgather(local_matchQ)            
            ## if the local shapes match, simply return the data_object            
            if np.all(global_matchQ):
                extracted_data = data_object[:] 
            ## if not, allgather the local data pieces and extract from this
            else:
                allgathered_data = self._allgather(data_object)
                allgathered_data = np.concatenate(allgathered_data)
                if allgathered_data.shape != self.global_shape:
                    raise ValueError(
                            about._errors.cstring(
            "ERROR: supplied shapes do neither match globally nor locally"))
                return self.extract_local_data(allgathered_data)
            
        ## if shape-casting was successfull, extract the data
        else:
            ## If the first dimension matches only via broadcasting...
            ## Case 1: ...do broadcasting. This procedure does not depend on the
            ## array type (ndarray or d2o)
            if matching_dimensions[0] == False:
                extracted_data = data_object[0:1]
    
    
            ## Case 2: First dimension fits directly and data_object is a d2o
            elif isinstance(data_object, distributed_data_object):
                ## Check if the distribution_strategy and the comm match 
                ## the own ones.            
                if type(self) == type(data_object.distributor) and\
                    self.comm == data_object.distributor.comm:
                    ## Case 1: yes. Simply take the local data
                    extracted_data = data_object.data
                else:            
                    ## Case 2: no. All nodes extract their local slice from the 
                    ## data_object
                    extracted_data =\
                        data_object[self.local_start:self.local_end]
            
            ## Case 3: First dimension fits directly and data_object is an generic
            ## array        
            else:
                extracted_data =\
                    data_object[self.local_start:self.local_end]
            
        return extracted_data

    def _reshape_foreign_data(self, foreign):
        ## Case 1:        
        ## check if the shapes match directly 
        if self.global_shape == foreign.shape:
            matching_dimensions = [True,]*len(self.global_shape)            
            return (foreign, matching_dimensions)
        ## Case 2:
        ## if not, try to reshape the input data
        ## in particular, this will fail when foreign is a d2o as long as 
        ## reshaping is not implemented
        try:
            output = foreign.reshape(self.global_shape)
            matching_dimensions = [True,]*len(self.global_shape)
            return (output, matching_dimensions)
        except(ValueError, AttributeError):
            pass
        ## Case 3:
        ## if this does not work, try to broadcast the shape
        ## check if the dimensions match
        if len(self.global_shape) != len(foreign.shape):
           raise ValueError(
               about._errors.cstring("ERROR: unequal number of dimensions!")) 
        ## check direct matches
        direct_match = (np.array(self.global_shape) == np.array(foreign.shape))
        ## check broadcast compatibility
        broadcast_match = (np.ones(len(self.global_shape), dtype=int) ==\
                            np.array(foreign.shape))
        ## combine the matches and assert that all are true
        combined_match = (direct_match | broadcast_match)
        if not np.all(combined_match):
            raise ValueError(
                about._errors.cstring("ERROR: incompatible shapes!")) 
        matching_dimensions = tuple(direct_match)
        return (foreign, matching_dimensions)
Ultimanet's avatar
Ultimanet committed
1312
        
Ultimanet's avatar
Ultimanet committed
1313
                
1314
1315
1316
    def consolidate_data(self, data, target_rank='all', comm = None):
        if comm == None:
            comm = self.comm            
ultimanet's avatar
ultimanet committed
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
        _gathered_data = np.empty(self.global_shape, dtype=self.dtype)
        _dim_list = self.all_local_slices[:,3]
        _dim_offset_list = self.all_local_slices[:,4]
        if target_rank == 'all':
            comm.Allgatherv([data, self.mpi_dtype], 
                         [_gathered_data, _dim_list, _dim_offset_list, self.mpi_dtype])                
        else:
            comm.Gatherv([data, self.mpi_dtype], 
                         [_gathered_data, _dim_list, _dim_offset_list, self.mpi_dtype],
                         root=target_rank)
        return _gathered_data
    
    if found['h5py']:
1330
1331
1332
        def save_data(self, data, alias, path=None, overwriteQ=True, comm=None):
            if comm == None:
                comm = self.comm            
ultimanet's avatar
ultimanet committed
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
            ## if no path and therefore no filename was given, use the alias as filename        
            use_path = alias if path==None else path
            
            ## create the file-handle
            if found['h5py_parallel']:
                f = h5py.File(use_path, 'a', driver='mpio', comm=comm)
            else:
                f= h5py.File(use_path, 'a')
            ## check if dataset with name == alias already exists
            try: 
                f[alias]
                if overwriteQ == False: #if yes, and overwriteQ is set to False, raise an Error
Ultimanet's avatar
Ultimanet committed
1345
                    raise KeyError(about._errors.cstring("ERROR: overwriteQ == False, but alias already in use!"))
ultimanet's avatar
ultimanet committed
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
                else: # if yes, remove the existing dataset
                    del f[alias]
            except(KeyError):
                pass
            
            ## create dataset
            dset = f.create_dataset(alias, shape=self.global_shape, dtype=self.dtype)
            ## write the data
            dset[self.local_start:self.local_end] = data
            ## close the file
            f.close()
        
1358
1359
1360
        def load_data(self, alias, path, comm=None):
            if comm == None:
                comm = self.comm            
ultimanet's avatar
ultimanet committed
1361
1362
1363
1364
1365
1366
1367
1368
            ## create the file-handle
            if found['h5py_parallel']:
                f = h5py.File(path, 'r', driver='mpio', comm=comm)
            else:
                f= h5py.File(path, 'r')        
            dset = f[alias]        
            ## check shape
            if dset.shape != self.global_shape:
Ultimanet's avatar
Ultimanet committed
1369
                raise TypeError(about._errors.cstring("ERROR: The shape of the given dataset does not match the distributed_data_object."))
ultimanet's avatar
ultimanet committed
1370
1371
            ## check dtype
            if dset.dtype.type != self.dtype:
Ultimanet's avatar
Ultimanet committed
1372
                raise TypeError(about._errors.cstring("ERROR: The datatype of the given dataset does not match the distributed_data_object."))
ultimanet's avatar
ultimanet committed
1373
1374
1375
1376
1377
1378
1379
            ## if everything seems to fit, load the data
            data = dset[self.local_start:self.local_end]
            ## close the file
            f.close()
            return data
    else:
        def save_data(self, *args, **kwargs):
Ultimanet's avatar
Ultimanet committed
1380
            raise ImportError(about._errors.cstring("ERROR: h5py was not imported")) 
ultimanet's avatar
ultimanet committed
1381
        def load_data(self, *args, **kwargs):
Ultimanet's avatar
Ultimanet committed
1382
            raise ImportError(about._errors.cstring("ERROR: h5py was not imported")) 
ultimanet's avatar
ultimanet committed
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
        
        
        
        

class _not_distributor(object):
    def __init__(self, global_data=None, global_shape=None, dtype=None, *args,  **kwargs):
        if dtype != None:        
            self.dtype = dtype
        elif global_data != None:
            self.dtype = np.array(global_data).dtype.type
            
1395
        if global_data != None and np.array(global_data).shape != ():
ultimanet's avatar
ultimanet committed
1396
1397
1398
1399
            self.global_shape = np.array(global_data).shape
        elif global_shape != None:
            self.global_shape = global_shape
        else:
Ultimanet's avatar
Ultimanet committed
1400
            raise TypeError(about._errors.cstring("ERROR: Neither data nor shape supplied!")) 
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
    
    def globalize_flat_index(self, index):
        return index
    
    def globalize_index(self, index):
        return index
    
    def _allgather(self, thing):
        return [thing,]
        
ultimanet's avatar
ultimanet committed
1411
    def distribute_data(self, data, **kwargs):
Ultimanet's avatar
Ultimanet committed
1412
1413
1414
1415
1416
        if data == None:        
            return np.zeros(self.global_shape, dtype=self.dtype)
        else:
            return np.array(data).astype(self.dtype, copy=False).\
                    reshape(self.global_shape)
ultimanet's avatar
ultimanet committed
1417
    
1418
    def disperse_data(self, data, data_update, key, **kwargs):
ultimanet's avatar
ultimanet committed
1419
1420
        data[key] = np.array(data_update, copy=False).astype(self.dtype)
                     
1421
1422
    def collect_data(self, data, slice_objects,  **kwargs):
        return data[slice_objects]
ultimanet's avatar
ultimanet committed
1423
        
1424
    def consolidate_data(self, data, **kwargs):
ultimanet's avatar
ultimanet committed
1425
        return data
Ultimanet's avatar
Ultimanet committed
1426
1427
1428
1429
        
    def inject(self, data, to_slices = (slice(None),), data_update = None, 
               from_slices = (slice(None),)):
        data[to_slices] = data_update[from_slices]
Ultimanet's avatar
Ultimanet committed
1430
1431
1432
    
    def extract_local_data(self, data_object):
        return data_object.get_full_data()
Ultimanet's avatar
Ultimanet committed
1433
1434
1435
1436
1437
1438
1439
1440
        
    def save_data(self, *args, **kwargs):
        raise AttributeError(about._errors.cstring(
                                        "ERROR: save_data not implemented")) 
    def load_data(self, *args, **kwargs):
        raise AttributeError(about._errors.cstring(
                                        "ERROR: load_data not implemented")) 
                                        
ultimanet's avatar
ultimanet committed
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453



class dtype_converter:
    """
        NIFTY class for dtype conversion between python/numpy dtypes and MPI
        dtypes.
    """
    
    def __init__(self):
        pre_dict = [
                    #[, MPI_CHAR],
                    #[, MPI_SIGNED_CHAR],
1454
1455
                    #[, MPI_UNSIGNED_CHAR],
                    [np.bool, MPI.BYTE],
ultimanet's avatar
ultimanet committed
1456
1457
                    [np.int16, MPI.SHORT],
                    [np.uint16, MPI.UNSIGNED_SHORT],
1458
                    [np.uint32, MPI.UNSIGNED_INT],
ultimanet's avatar
ultimanet committed
1459
                    [np.int32, MPI.INT],
1460
                    [np.int, MPI.LONG],  
ultimanet's avatar
ultimanet committed
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
                    [np.int64, MPI.LONG],
                    [np.uint64, MPI.UNSIGNED_LONG],
                    [np.int64, MPI.LONG_LONG],
                    [np.uint64, MPI.UNSIGNED_LONG_LONG],
                    [np.float32, MPI.FLOAT],
                    [np.float, MPI.DOUBLE],
                    [np.float64, MPI.DOUBLE],
                    [np.float128, MPI.LONG_DOUBLE],
                    [np.complex64, MPI.COMPLEX],
                    [np.complex, MPI.DOUBLE_COMPLEX],
                    [np.complex128, MPI.DOUBLE_COMPLEX]]
                    
        to_mpi_pre_dict = np.array(pre_dict)
        to_mpi_pre_dict[:,0] = map(self.dictionize_np, to_mpi_pre_dict[:,0])
        self._to_mpi_dict = dict(to_mpi_pre_dict)
        
        to_np_pre_dict = np.array(pre_dict)[:,::-1]
        to_np_pre_dict[:,0] = map(self.dictionize_mpi, to_np_pre_dict[:,0])
        self._to_np_dict = dict(to_np_pre_dict)

    def dictionize_np(self, x):
        return frozenset(x.__dict__.items())
        
    def dictionize_mpi(self, x):
        return x.name
    
    def to_mpi(self, dtype):
        return self._to_mpi_dict[self.dictionize_np(dtype)]

    def to_np(self, dtype):
        return self._to_np_dict[self.dictionize_mpi(dtype)]
    
    def known_mpi_Q(self, dtype):
        return self._to_np_dict.has_key(self.dictionize_mpi(dtype))
    
    def known_np_Q(self, dtype):
        return self._to_mpi_dict.has_key(self.dictionize_np(dtype))
Ultimanet's avatar
Ultimanet committed
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
#
#class test(object):
#    def __init__(self,x=None, *args, **kwargs):
#        self.x =x
#        print args
#        print kwargs
#    @property
#    def val(self):
#        return self.x
#    
#    @val.setter
#    def val(self, x):
#        self.x = x
#
#
#if __name__ == '__main__':    
#    comm = MPI.COMM_WORLD
#    rank = comm.rank
#    if True:
#    #if rank == 0:
#        x = np.arange(100).reshape((10,10)).astype(np.int)
#        #x = x**2
#        #x = x[::-1,::-1] + x
#        
#        #print x
#        #x = np.arange(3)
#
#
#    else:
#        x = None
#    obj = distributed_data_object(global_data=x, distribution_strategy='fftw')
#    
#    
#    #obj.load('myalias', 'mpitest.hdf5')
#    if MPI.COMM_WORLD.rank==0:
#        print ('rank', rank, vars(obj.distributor))
#    MPI.COMM_WORLD.Barrier()
#    #print ('rank', rank, vars(obj))
#    
#    MPI.COMM_WORLD.Barrier()
#    temp_erg =obj.get_full_data(target_rank='all')
#    print ('rank', rank, 'full data', np.all(temp_erg == x), temp_erg.shape)
#    #print ('rank', rank, ' local flat index: ', 1000, ' globalized: ', obj.distributor.globalize_flat_index(1000))    
#    #temp_index= (80,80,666)    
#    #print ('rank', rank, ' local index: ', temp_index, ' globalized: ', obj.distributor.globalize_index(temp_index)) 
#    
#
#    MPI.COMM_WORLD.Barrier()
#    sl = slice(13,1,-3)
#    if rank == 0:    
#        print ('erwuenscht', x[sl])
#    print obj[sl]
#    """
#    sl = slice(1,2+rank,1)
#    print ('slice', rank, sl, obj[sl,2])
#    print obj[1:5:2,1:3]
#    if rank == 0:
#        sl = (slice(1,9,2), slice(1,5,2))
#        d = [[111, 222],[333,444],[111, 222],[333,444]]
#    else:
#        sl = (slice(6,10,2), slice(1,5,2))
#        d = [[555, 666],[777,888]]
#    obj[sl] = d
#    print obj.get_full_data()    
#   """