nifty_power_conversion_lm.py 5.06 KB
Newer Older
Marco Selig's avatar
Marco Selig committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2014 Max-Planck-Society
##
## Author: Maksim Greiner, Marco Selig
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.

#from nifty import *
import numpy as np
24
from numpy import pi
25
from nifty.config import about
26
from nifty.field import Field
Ultimanet's avatar
Ultimanet committed
27
from nifty.nifty_simple_math import sqrt, exp, log
Marco Selig's avatar
Marco Selig committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73


def power_backward_conversion_lm(k_space,p,mean=None):
    """
        This function is designed to convert a theoretical/statistical power
        spectrum of a log-normal field to the theoretical power spectrum of
        the underlying Gaussian field.
        The function only works for power spectra defined for lm_spaces

        Parameters
        ----------
        k_space : nifty.rg_space,
            a regular grid space with the attribute `Fourier = True`
        p : np.array,
            the power spectrum of the log-normal field.
            Needs to have the same number of entries as
            `k_space.get_power_indices()[0]`
        mean : float, *optional*
            specifies the mean of the log-normal field. If `mean` is not
            specified the function will use the monopole of the power spectrum.
            If it is specified the function will NOT use the monopole of the
            spectrum. (default: None)
            WARNING: a mean that is too low can violate positive definiteness
            of the log-normal field. In this case the function produces an
            error.

        Returns
        -------
        mean : float,
            the recovered mean of the underlying Gaussian distribution.
        p1 : np.array,
            the power spectrum of the underlying Gaussian field, where the
            monopole has been set to zero. Eventual monopole power has been
            shifted to the mean.

        References
        ----------
        .. [#] M. Greiner and T.A. Ensslin, "Log-transforming the matter power spectrum";
            `arXiv:1312.1354 <http://arxiv.org/abs/1312.1354>`_
    """

    p = np.copy(p)
    if(mean is not None):
        p[0] = 4*pi*mean**2

    klen = k_space.get_power_indices()[0]
74
    C_0_Omega = Field(k_space,val=0)
Marco Selig's avatar
Marco Selig committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    C_0_Omega.val[:len(klen)] = p*sqrt(2*klen+1)/sqrt(4*pi)
    C_0_Omega = C_0_Omega.transform()

    if(np.any(C_0_Omega.val<0.)):
        raise ValueError(about._errors.cstring("ERROR: spectrum or mean incompatible with positive definiteness.\n Try increasing the mean."))
        return None

    lC = log(C_0_Omega)

    Z = lC.transform()

    spec = Z.val[:len(klen)]

    mean = (spec[0]-0.5*sqrt(4*pi)*log((p*(2*klen+1)/(4*pi)).sum()))/sqrt(4*pi)

    spec[0] = 0.

    spec = spec*sqrt(4*pi)/sqrt(2*klen+1)

    spec = np.real(spec)

    if(np.any(spec<0.)):
        spec = spec*(spec>0.)
        about.warnings.cprint("WARNING: negative modes set to zero.")

    return mean.real,spec


def power_forward_conversion_lm(k_space,p,mean=0):
    """
        This function is designed to convert a theoretical/statistical power
        spectrum of a Gaussian field to the theoretical power spectrum of
        the exponentiated field.
        The function only works for power spectra defined for lm_spaces

        Parameters
        ----------
        k_space : nifty.rg_space,
            a regular grid space with the attribute `Fourier = True`
        p : np.array,
            the power spectrum of the Gaussian field.
            Needs to have the same number of entries as
            `k_space.get_power_indices()[0]`
        m : float, *optional*
            specifies the mean of the Gaussian field (default: 0).

        Returns
        -------
        p1 : np.array,
            the power spectrum of the exponentiated Gaussian field.

        References
        ----------
        .. [#] M. Greiner and T.A. Ensslin, "Log-transforming the matter power spectrum";
            `arXiv:1312.1354 <http://arxiv.org/abs/1312.1354>`_
    """
    m = mean
    klen = k_space.get_power_indices()[0]
133
    C_0_Omega = Field(k_space,val=0)
Marco Selig's avatar
Marco Selig committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    C_0_Omega.val[:len(klen)] = p*sqrt(2*klen+1)/sqrt(4*pi)
    C_0_Omega = C_0_Omega.transform()

    C_0_0 = (p*(2*klen+1)/(4*pi)).sum()

    exC = exp(C_0_Omega+C_0_0+2*m)

    Z = exC.transform()

    spec = Z.val[:len(klen)]

    spec = spec*sqrt(4*pi)/sqrt(2*klen+1)

    spec = np.real(spec)

    if(np.any(spec<0.)):
        spec = spec*(spec>0.)
        about.warnings.cprint("WARNING: negative modes set to zero.")

    return spec