field.py 50.6 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
4
from __future__ import division
import numpy as np
import pylab as pl

5
6
from d2o import distributed_data_object, \
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
7

8
9
10
from nifty.config import about, \
    nifty_configuration as gc, \
    dependency_injector as gdi
csongor's avatar
csongor committed
11

12
13
from nifty.field_types import FieldType,\
                              FieldArray
14

15
from nifty.space import Space
csongor's avatar
csongor committed
16

csongor's avatar
csongor committed
17
import nifty.nifty_utilities as utilities
18
from nifty_random import random
csongor's avatar
csongor committed
19
20
21
22

POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']


23
class Field(object):
csongor's avatar
csongor committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    """
        ..         ____   __             __          __
        ..       /   _/ /__/           /  /        /  /
        ..      /  /_   __   _______  /  /    ____/  /
        ..     /   _/ /  / /   __  / /  /   /   _   /
        ..    /  /   /  / /  /____/ /  /_  /  /_/  /
        ..   /__/   /__/  \______/  \___/  \______|  class

        Basic NIFTy class for fields.

        Parameters
        ----------
        domain : space
            The space wherein valid arguments live.

        val : {scalar, ndarray}, *optional*
            Defines field values, either to be given by a number interpreted
            as a constant array, or as an arbitrary array consistent with the
            space defined in domain or to be drawn from a random distribution
            controlled by kwargs.

        codomain : space, *optional*
            The space wherein the operator output lives (default: domain).


        Other Parameters
        ----------------
        random : string
            Indicates that the field values should be drawn from a certain
            distribution using a pseudo-random number generator.
            Supported distributions are:

            - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
            - "gau" (normal distribution with zero-mean and a given standard
                deviation or variance)
            - "syn" (synthesizes from a given power spectrum)
            - "uni" (uniform distribution over [vmin,vmax[)

        dev : scalar
            Sets the standard deviation of the Gaussian distribution
            (default=1).

        var : scalar
            Sets the variance of the Gaussian distribution, outranking the dev
            parameter (default=1).

        spec : {scalar, list, array, field, function}
            Specifies a power spectrum from which the field values should be
            synthesized (default=1). Can be given as a constant, or as an
            array with indvidual entries per mode.
        log : bool
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).

        vmin : scalar
            Sets the lower limit for the uniform distribution.
        vmax : scalar
            Sets the upper limit for the uniform distribution.

        Attributes
        ----------
        domain : space
            The space wherein valid arguments live.

        val : {scalar, ndarray}, *optional*
            Defines field values, either to be given by a number interpreted
            as a constant array, or as an arbitrary array consistent with the
            space defined in domain or to be drawn from a random distribution
            controlled by the keyword arguments.

        codomain : space, *optional*
            The space wherein the operator output lives (default: domain).

    """

109
    def __init__(self, domain=None, val=None, codomain=None,
110
                 dtype=None, field_type=None, copy=False,
111
                 datamodel=None, comm=None, **kwargs):
csongor's avatar
csongor committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        """
            Sets the attributes for a field class instance.

        Parameters
        ----------
        domain : space
            The space wherein valid arguments live.

        val : {scalar,ndarray}, *optional*
            Defines field values, either to be given by a number interpreted
            as a constant array, or as an arbitrary array consistent with the
            space defined in domain or to be drawn from a random distribution
            controlled by the keyword arguments.

        codomain : space, *optional*
            The space wherein the operator output lives (default: domain).

        Returns
        -------
        Nothing

        """
        # If the given val was a field, try to cast it accordingly to the given
        # domain and codomain, etc...
136
        if isinstance(val, Field):
csongor's avatar
csongor committed
137
138
139
140
141
142
            self._init_from_field(f=val,
                                  domain=domain,
                                  codomain=codomain,
                                  comm=comm,
                                  copy=copy,
                                  dtype=dtype,
143
                                  field_type=field_type,
csongor's avatar
csongor committed
144
145
146
147
148
149
150
151
152
                                  datamodel=datamodel,
                                  **kwargs)
        else:
            self._init_from_array(val=val,
                                  domain=domain,
                                  codomain=codomain,
                                  comm=comm,
                                  copy=copy,
                                  dtype=dtype,
153
                                  field_type=field_type,
csongor's avatar
csongor committed
154
155
156
157
                                  datamodel=datamodel,
                                  **kwargs)

    def _init_from_field(self, f, domain, codomain, comm, copy, dtype,
158
                         field_type, datamodel, **kwargs):
csongor's avatar
csongor committed
159
160
161
162
163
164
        # check domain
        if domain is None:
            domain = f.domain

        # check codomain
        if codomain is None:
csongor's avatar
csongor committed
165
            if self._check_codomain(domain, f.codomain):
csongor's avatar
csongor committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
                codomain = f.codomain
            else:
                codomain = self.get_codomain(domain)

        # Check if the given field lives in a space which is compatible to the
        # given domain
        if f.domain != domain:
            # Try to transform the given field to the given domain/codomain
            f = f.transform(new_domain=domain,
                            new_codomain=codomain)

        self._init_from_array(domain=domain,
                              val=f.val,
                              codomain=codomain,
                              comm=comm,
                              copy=copy,
                              dtype=dtype,
                              datamodel=datamodel,
                              **kwargs)

    def _init_from_array(self, val, domain, codomain, comm, copy, dtype,
187
                         field_type, datamodel, **kwargs):
csongor's avatar
csongor committed
188
        # check domain
189
        self.domain = self._parse_domain(domain=domain)
190
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
191
192
193

        # check codomain
        if codomain is None:
194
            self.codomain = self._build_codomain(domain=self.domain)
195
196
197
        else:
            self.codomain = self._parse_codomain(codomain, self.domain)

198
        self.field_type = self._parse_field_type(field_type)
199
        self.field_type_axes = self._get_axes_tuple(self.field_type)
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

        if dtype is None:
            dtype = self._infer_dtype(domain=self.domain,
                                      dtype=dtype,
                                      field_type=self.field_type)
        self.dtype = dtype

        if comm is not None:
            self.comm = self._parse_comm(comm)
        elif isinstance(val, distributed_data_object):
            self.comm = val.comm
        else:
            self.comm = gc['default_comm']

        if datamodel in DISTRIBUTION_STRATEGIES['all']:
            self.datamodel = datamodel
        elif isinstance(val, distributed_data_object):
            self.datamodel = val.distribution_strategy
        else:
            self.datamodel = gc['default_datamodel']
csongor's avatar
csongor committed
220
221
222

        if val is None:
            if kwargs == {}:
csongor's avatar
csongor committed
223
                val = self.cast(0)
csongor's avatar
csongor committed
224
            else:
csongor's avatar
csongor committed
225
226
227
                val = self.get_random_values(domain=self.domain,
                                             codomain=self.codomain,
                                             **kwargs)
csongor's avatar
csongor committed
228
229
        self.set_val(new_val=val, copy=copy)

230
231
232
233
234
    def _infer_dtype(self, domain=None, dtype=None, field_type=None):
        dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
235
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
236

csongor's avatar
csongor committed
237
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
csongor's avatar
csongor committed
238
239
        return dtype

240
    def _get_axes_tuple(self, things_with_shape):
csongor's avatar
csongor committed
241
        i = 0
242
243
        axes_list = []
        for thing in things_with_shape:
csongor's avatar
csongor committed
244
            l = []
245
            for j in range(len(thing.shape)):
csongor's avatar
csongor committed
246
247
                l += [i]
                i += 1
248
            axes_list += [tuple(l)]
249
        return tuple(axes_list)
csongor's avatar
csongor committed
250

csongor's avatar
csongor committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    def _parse_comm(self, comm):
        # check if comm is a string -> the name of comm is given
        # -> Extract it from the mpi_module
        if isinstance(comm, str):
            if gc.validQ('default_comm', comm):
                result_comm = getattr(gdi[gc['mpi_module']], comm)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: The given communicator-name is not supported."))
        # check if the given comm object is an instance of default Intracomm
        else:
            if isinstance(comm, gdi[gc['mpi_module']].Intracomm):
                result_comm = comm
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: The given comm object is not an instance of the " +
                    "default-MPI-module's Intracomm Class."))
        return result_comm

270
    def _parse_domain(self, domain):
271
272
273
        if domain is None:
            domain = ()
        elif not isinstance(domain, tuple):
274
            domain = (domain,)
csongor's avatar
csongor committed
275
        for d in domain:
276
            if not isinstance(d, Space):
csongor's avatar
csongor committed
277
                raise TypeError(about._errors.cstring(
278
279
                    "ERROR: Given domain contains something that is not a "
                    "nifty.space."))
csongor's avatar
csongor committed
280
281
        return domain

282
283
284
285
286
287
288
    def _parse_codomain(self, codomain, domain):
        if not isinstance(codomain, tuple):
            codomain = (codomain,)
        if len(domain) != len(codomain):
            raise ValueError(about._errors.cstring(
                "ERROR: domain and codomain do not have the same length."))
        for (cd, d) in zip(codomain, domain):
289
            if not isinstance(cd, Space):
290
291
292
293
294
295
296
297
                raise TypeError(about._errors.cstring(
                    "ERROR: Given codomain contains something that is not a"
                    "nifty.space."))
            if not d.check_codomain(cd):
                raise ValueError(about._errors.cstring(
                    "ERROR: codomain contains a space that is not compatible "
                    "to its domain-counterpart."))
        return codomain
csongor's avatar
csongor committed
298

299
300
301
302
303
304
    def _parse_field_type(self, field_type):
        if field_type is None:
            field_type = ()
        elif not isinstance(field_type, tuple):
            field_type = (field_type,)
        for ft in field_type:
305
            if not isinstance(ft, FieldType):
306
                raise TypeError(about._errors.cstring(
307
                    "ERROR: Given object is not a nifty.FieldType."))
308
309
310
        return field_type

    def _build_codomain(self, domain):
311
312
        codomain = tuple(sp.get_codomain() for sp in domain)
        return codomain
csongor's avatar
csongor committed
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    def get_random_values(self, **kwargs):
        arg = random.parse_arguments(self, **kwargs)

        if arg is None:
            return self.cast(0)

        # Prepare the empty distributed_data_object
        sample = distributed_data_object(
                                    global_shape=self.shape,
                                    dtype=self.dtype)

        # Case 1: uniform distribution over {-1,+1}/{1,i,-1,-i}
        if arg['random'] == 'pm1':
            sample.apply_generator(lambda s: random.pm1(dtype=self.dtype,
                                                        shape=s))

        # Case 2: normal distribution with zero-mean and a given standard
        #         deviation or variance
        elif arg['random'] == 'gau':
            std = arg['std']
            if np.isscalar(std) or std is None:
                processed_std = std
            else:
                try:
                    processed_std = sample.distributor. \
                        extract_local_data(std)
                except(AttributeError):
                    processed_std = std

            sample.apply_generator(lambda s: random.gau(dtype=self.dtype,
                                                        shape=s,
                                                        mean=arg['mean'],
                                                        std=processed_std))

        # Case 3: uniform distribution
        elif arg['random'] == 'uni':
            sample.apply_generator(lambda s: random.uni(dtype=self.dtype,
                                                        shape=s,
                                                        vmin=arg['vmin'],
                                                        vmax=arg['vmax']))
        return sample
csongor's avatar
csongor committed
355

csongor's avatar
csongor committed
356
    def __len__(self):
357
        return int(self.dim[0])
csongor's avatar
csongor committed
358

359
    def copy(self, domain=None, codomain=None, field_type=None, **kwargs):
csongor's avatar
csongor committed
360
        copied_val = self._unary_operation(self.get_val(), op='copy', **kwargs)
361
362
363
        new_field = self.copy_empty(domain=domain,
                                    codomain=codomain,
                                    field_type=field_type)
364
        new_field.set_val(new_val=copied_val, copy=True)
csongor's avatar
csongor committed
365
366
367
368
369
370
371
        return new_field

    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
csongor's avatar
csongor committed
372
        # copy domain, codomain and val
csongor's avatar
csongor committed
373
374
375
376
377
        for key, value in self.__dict__.items():
            if key != 'val':
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = \
378
                    self._unary_operation(self.val, op='copy_empty')
csongor's avatar
csongor committed
379
380
381
        return new_field

    def copy_empty(self, domain=None, codomain=None, dtype=None, comm=None,
382
                   datamodel=None, field_type=None, **kwargs):
csongor's avatar
csongor committed
383
384
        if domain is None:
            domain = self.domain
385

csongor's avatar
csongor committed
386
387
        if codomain is None:
            codomain = self.codomain
388

csongor's avatar
csongor committed
389
390
        if dtype is None:
            dtype = self.dtype
391

csongor's avatar
csongor committed
392
393
        if comm is None:
            comm = self.comm
394

csongor's avatar
csongor committed
395
396
397
        if datamodel is None:
            datamodel = self.datamodel

398
399
400
401
        if field_type is None:
            field_type = self.field_type

        _fast_copyable = True
402
        for i in xrange(len(self.domain)):
403
404
405
406
407
408
            if self.domain[i] is not domain[i]:
                _fast_copyable = False
                break
            if self.codomain[i] is not codomain[i]:
                _fast_copyable = False
                break
409
410
411
412
413
414

        for i in xrange(len(self.field_type)):
            if self.field_type[i] is not field_type[i]:
                _fast_copyable = False
                break

415
416
        if (_fast_copyable and dtype == self.dtype and comm == self.comm and
                datamodel == self.datamodel and
417
                kwargs == {}):
csongor's avatar
csongor committed
418
419
            new_field = self._fast_copy_empty()
        else:
420
            new_field = Field(domain=domain, codomain=codomain, dtype=dtype,
421
422
                              comm=comm, datamodel=datamodel,
                              field_type=field_type, **kwargs)
csongor's avatar
csongor committed
423
424
425
426
427
428
429
430
431
432
433
434
        return new_field

    def set_val(self, new_val=None, copy=False):
        """
            Resets the field values.

            Parameters
            ----------
            new_val : {scalar, ndarray}
                New field values either as a constant or an arbitrary array.

        """
435
436
437
438
        new_val = self.cast(new_val)
        if copy:
            new_val = self.unary_operation(new_val, op='copy')
        self.val = new_val
csongor's avatar
csongor committed
439
440
        return self.val

441
442
443
444
445
    def get_val(self, copy=False):
        if copy:
            return self.val.copy()
        else:
            return self.val
csongor's avatar
csongor committed
446
447

    def __getitem__(self, key):
csongor's avatar
csongor committed
448
449
450
451
        return self.val[key]

    def __setitem__(self, key, item):
        self.val[key] = item
csongor's avatar
csongor committed
452

453
454
    @property
    def shape(self):
455
456
457
458
459
460
461
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
462

463
        return global_shape
csongor's avatar
csongor committed
464

465
466
    @property
    def dim(self):
csongor's avatar
csongor committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
        """
            Computes the (array) dimension of the underlying space.

            Parameters
            ----------
            split : bool
                Sets the output to be either split up per axis or
                in form of total number of field entries in all
                dimensions (default=False)

            Returns
            -------
            dim : {scalar, ndarray}
                Dimension of space.

        """
theos's avatar
theos committed
483
        return np.prod(self.shape)
csongor's avatar
csongor committed
484

485
486
487
488
489
490
    @property
    def dof(self):
        dof_tuple = ()
        dof_tuple += tuple(sp.dof for sp in self.domain)
        dof_tuple += tuple(ft.dof for ft in self.field_type)
        try:
491
            return reduce(lambda x, y: x * y, dof_tuple)
492
493
494
495
496
497
498
499
500
501
502
503
        except TypeError:
            return ()

    @property
    def dof_split(self):
        dof_tuple = ()
        dof_tuple += tuple(sp.dof_split for sp in self.domain)
        dof_tuple += tuple(ft.dof_split for ft in self.field_type)
        try:
            return reduce(lambda x, y: x + y, dof_tuple)
        except TypeError:
            return ()
csongor's avatar
csongor committed
504
505
506
507

    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
508
509
        else:
            dtype = np.dtype(dtype)
510

csongor's avatar
csongor committed
511
        casted_x = self._cast_to_d2o(x, dtype=dtype)
512
513

        for ind, sp in enumerate(self.domain):
514
            casted_x = sp.complement_cast(casted_x,
515
                                          axis=self.domain_axes[ind])
516
517
518

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.complement_cast(casted_x,
519
                                          axis=self.field_type_axes[ind])
520
521

        return casted_x
csongor's avatar
csongor committed
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

    def _cast_to_d2o(self, x, dtype=None, shape=None, **kwargs):
        """
            Computes valid field values from a given object, trying
            to translate the given data into a valid form. Thereby it is as
            benevolent as possible.

            Parameters
            ----------
            x : {float, numpy.ndarray, nifty.field}
                Object to be transformed into an array of valid field values.

            Returns
            -------
            x : numpy.ndarray, distributed_data_object
                Array containing the field values, which are compatible to the
                space.

            Other parameters
            ----------------
            verbose : bool, *optional*
                Whether the method should raise a warning if information is
                lost during casting (default: False).
        """
546
        if isinstance(x, Field):
csongor's avatar
csongor committed
547
548
549
550
551
552
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

        if shape is None:
theos's avatar
theos committed
553
            shape = self.shape
csongor's avatar
csongor committed
554
555
556
557
558
559
560
561

        # Case 1: x is a distributed_data_object
        if isinstance(x, distributed_data_object):
            to_copy = False

            # Check the shape
            if np.any(np.array(x.shape) != np.array(shape)):
                # Check if at least the number of degrees of freedom is equal
562
                if x.dim == self.dim:
csongor's avatar
csongor committed
563
564
565
566
567
568
569
570
571
572
573
574
                    try:
                        temp = x.copy_empty(global_shape=shape)
                        temp.set_local_data(x, copy=False)
                    except:
                        # If the number of dof is equal or 1, use np.reshape...
                        about.warnings.cflush(
                            "WARNING: Trying to reshape the data. This " +
                            "operation is expensive as it consolidates the " +
                            "full data!\n")
                        temp = x
                        temp = np.reshape(temp, shape)
                    # ... and cast again
csongor's avatar
csongor committed
575
                    return self._cast_to_d2o(temp, dtype=dtype, **kwargs)
csongor's avatar
csongor committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

                else:
                    raise ValueError(about._errors.cstring(
                        "ERROR: Data has incompatible shape!"))

            # Check the dtype
            if x.dtype != dtype:
                if x.dtype > dtype:
                    about.warnings.cflush(
                        "WARNING: Datatypes are of conflicting precision " +
                        "(own: " + str(dtype) + " <> foreign: " +
                        str(x.dtype) + ") and will be casted! Potential " +
                        "loss of precision!\n")
                to_copy = True

            # Check the distribution_strategy
            if x.distribution_strategy != self.datamodel:
                to_copy = True

            if to_copy:
                temp = x.copy_empty(dtype=dtype,
                                    distribution_strategy=self.datamodel)
                temp.set_data(to_key=(slice(None),),
                              data=x,
                              from_key=(slice(None),))
                temp.hermitian = x.hermitian
                x = temp

            return x

        # Case 2: x is something else
        # Use general d2o casting
        else:
            x = distributed_data_object(x,
theos's avatar
theos committed
610
                                        global_shape=self.shape,
csongor's avatar
csongor committed
611
612
613
614
615
                                        dtype=dtype,
                                        distribution_strategy=self.datamodel)
            # Cast the d2o
            return self.cast(x, dtype=dtype)

616
    def weight(self, power=1, inplace=False, spaces=None):
csongor's avatar
csongor committed
617
618
619
620
621
622
623
624
625
626
        """
            Returns the field values, weighted with the volume factors to a
            given power. The field values will optionally be overwritten.

            Parameters
            ----------
            power : scalar, *optional*
                Specifies the optional power coefficient to which the field
                values are taken (default=1).

627
            inplace : bool, *optional*
csongor's avatar
csongor committed
628
629
630
631
632
                Whether to overwrite the field values or not (default: False).

            Returns
            -------
            field   : field, *optional*
633
                If inplace is False, the weighted field is returned.
csongor's avatar
csongor committed
634
635
636
                Otherwise, nothing is returned.

        """
637
        if inplace:
csongor's avatar
csongor committed
638
639
640
641
            new_field = self
        else:
            new_field = self.copy_empty()

642
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
643

csongor's avatar
csongor committed
644
        if spaces is None:
theos's avatar
theos committed
645
            spaces = range(len(self.shape))
csongor's avatar
csongor committed
646

647
648
649
        for ind, sp in enumerate(self.domain):
            new_val = sp.calc_weight(new_val,
                                     power=power,
650
                                     axes=self.domain_axes[ind])
651
652

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
653
654
        return new_field

655
    def norm(self, q=2):
csongor's avatar
csongor committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
670
        if q == 2:
671
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
672
        else:
673
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
674

675
    def dot(self, x=None, bare=False):
csongor's avatar
csongor committed
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
        """
            Computes the inner product of the field with a given object
            implying the correct volume factor needed to reflect the
            discretization of the continuous fields.

            Parameters
            ----------
            x : {scalar, ndarray, field}, *optional*
                The object with which the inner product is computed
                (default=None).

            Returns
            -------
            dot : scalar
                The result of the inner product.

        """
        # Case 1: x equals None
        if x is None:
            return None

        # Case 2: x is a field
698
        elif isinstance(x, Field):
699
700
            for ind, sp in enumerate(self.domain):
                assert sp == x.domain[ind]
csongor's avatar
csongor committed
701
702
703

            # whether the domain matches exactly or not:
            # extract the data from x and try to dot with this
704
            return self.dot(x=x.get_val(), bare=bare)
csongor's avatar
csongor committed
705
706
707
708
709

        # Case 3: x is something else
        else:

            # Compute the dot respecting the fact of discrete/continous spaces
710
711
712
713
714
            if not bare:
                y = self.weight(power=1)
            else:
                y = self
            y = y.get_val(copy=False)
csongor's avatar
csongor committed
715

716
717
            # Cast the input in order to cure dtype and shape differences
            x = self.cast(x)
csongor's avatar
csongor committed
718

719
            dotted = x.conjugate() * y
csongor's avatar
csongor committed
720

721
            for ind in range(-1, -len(self.field_type_axes)-1, -1):
722
723
                dotted = self.field_type[ind].dot_contraction(
                            dotted,
724
                            axes=self.field_type_axes[ind])
csongor's avatar
csongor committed
725

726
            for ind in range(-1, -len(self.domain_axes)-1, -1):
727
728
                dotted = self.domain[ind].dot_contraction(
                            dotted,
729
                            axes=self.domain_axes[ind])
730
            return dotted
csongor's avatar
csongor committed
731

732
733
    def vdot(self, *args, **kwargs):
        return self.dot(*args, **kwargs)
csongor's avatar
csongor committed
734

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
#    def outer_dot(self, x=1, axis=None):
#
#        # Use the fact that self.val is a numpy array of dtype np.object
#        # -> The shape casting, etc... can be done by numpy
#        # If ishape == (), self.val will be multiplied with x directly.
#        if self.ishape == ():
#            return self * x
#        new_val = np.sum(self.get_val() * x, axis=axis)
#        # if axis != None, the contraction was not overarching
#        if np.dtype(new_val.dtype).type == np.object_:
#            new_field = self.copy_empty(ishape=new_val.shape)
#        else:
#            new_field = self.copy_empty(ishape=())
#        new_field.set_val(new_val=new_val)
#        return new_field
#
#    def tensor_product(self, x=None):
#        if x is None:
#            return self
#        elif np.isscalar(x) == True:
#            return self * x
#        else:
#            if self.ishape == ():
#                temp_val = self.get_val()
#                old_val = np.empty((1,), dtype=np.object)
#                old_val[0] = temp_val
#            else:
#                old_val = self.get_val()
#
#            new_val = np.tensordot(old_val, x, axes=0)
#
#            if self.ishape == ():
#                new_val = new_val[0]
#            new_field = self.copy_empty(ishape=new_val.shape)
#            new_field.set_val(new_val=new_val)
#
#            return new_field
csongor's avatar
csongor committed
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

788
789
        new_val = self.get_val(copy=False)
        new_val = self._unary_operation(new_val, op='conjugate')
csongor's avatar
csongor committed
790

791
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
792
793
794

        return work_field

795
    def transform(self, spaces=None, **kwargs):
csongor's avatar
csongor committed
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
        """
            Computes the transform of the field using the appropriate conjugate
            transformation.

            Parameters
            ----------
            codomain : space, *optional*
                Domain of the transform of the field (default:self.codomain)

            overwrite : bool, *optional*
                Whether to overwrite the field or not (default: False).

            Other Parameters
            ----------------
            iter : scalar
                Number of iterations (default: 0)

            Returns
            -------
            field : field, *optional*
                If overwrite is False, the transformed field is returned.
                Otherwise, nothing is returned.

        """
820
821

        try:
822
            iter(spaces)
823
824
        except TypeError:
            if spaces is None:
825
                spaces = xrange(len(self.domain_axes))
826
            else:
827
                spaces = (spaces, )
csongor's avatar
csongor committed
828

csongor's avatar
csongor committed
829
        new_val = self.get_val()
830
831
832
833
        new_domain = ()
        new_codomain = ()
        for ind in xrange(len(self.domain)):
            if ind in spaces:
834
                sp = self.domain[ind]
835
                cosp = self.codomain[ind]
836
                new_val = sp.calc_transform(new_val,
837
838
                                            codomain=cosp,
                                            axes=self.domain_axes[ind],
839
                                            **kwargs)
840
841
842
843
844
                new_domain += (self.codomain[ind],)
                new_codomain += (self.domain[ind],)
            else:
                new_domain += (self.domain[ind],)
                new_codomain += (self.codomain[ind],)
845
846
847

        return_field = self.copy_empty(domain=new_domain,
                                       codomain=new_codomain)
csongor's avatar
csongor committed
848
        return_field.set_val(new_val=new_val, copy=False)
849

csongor's avatar
csongor committed
850
851
        return return_field

852
    def smooth(self, sigma=0, spaces=None, **kwargs):
csongor's avatar
csongor committed
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
        """
            Smoothes the field by convolution with a Gaussian kernel.

            Parameters
            ----------
            sigma : scalar, *optional*
                standard deviation of the Gaussian kernel specified in units of
                length in position space (default: 0)

            overwrite : bool, *optional*
                Whether to overwrite the field or not (default: False).

            Other Parameters
            ----------------
            iter : scalar
                Number of iterations (default: 0)

            Returns
            -------
            field : field, *optional*
                If overwrite is False, the transformed field is returned.
                Otherwise, nothing is returned.

        """
877
878
879
880
881
882
        new_field = self.copy_empty()

        try:
            spaces_iterator = iter(spaces)
        except TypeError:
            if spaces is None:
883
                spaces_iterator = xrange(len(self.domain))
884
885
            else:
                spaces_iterator = (spaces, )
csongor's avatar
csongor committed
886

csongor's avatar
csongor committed
887
        new_val = self.get_val()
888
889
890
891
        for ind in spaces_iterator:
            sp = self.domain[ind]
            new_val = sp.calc_smooth(new_val,
                                     sigma=sigma,
892
                                     axes=self.domain_axes[ind],
893
                                     **kwargs)
csongor's avatar
csongor committed
894

895
        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
        return new_field

    def power(self, **kwargs):
        """
            Computes the power spectrum of the field values.

            Other Parameters
            ----------------
            pindex : ndarray, *optional*
                Specifies the indexing array for the distribution of
                indices in conjugate space (default: None).
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
            rho : scalar
                Number of degrees of freedom per irreducible band
                (default=None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on
                logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to
                ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).
            iter : scalar
                Number of iterations (default: 0)

            Returns
            -------
            spec : ndarray
                Returns the power spectrum.

        """
937
        if ("codomain" in kwargs):
csongor's avatar
csongor committed
938
939
940
            kwargs.__delitem__("codomain")
            about.warnings.cprint("WARNING: codomain was removed from kwargs.")

941
942
943
944
945
946
947
948
#        power_spectrum = self.get_val()
#        for ind, space in self.domain:
#            power_spectrum = space.calc_smooth(power_spectrum,
#                                               codomain=self.codomain,
#                                               axis=self.axes_list[ind],
#                                               **kwargs)
#
#        return power_spectrum
csongor's avatar
csongor committed
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

    def hat(self):
        """
            Translates the field into a diagonal operator.

            Returns
            -------
            D : operator
                The new diagonal operator instance.

        """
        from nifty.operators.nifty_operators import diagonal_operator
        return diagonal_operator(domain=self.domain,
                                 diag=self.get_val(),
                                 bare=False,
                                 ishape=self.ishape)

    def inverse_hat(self):
        """
            Translates the inverted field into a diagonal operator.

            Returns
            -------
            D : operator
                The new diagonal operator instance.

        """
csongor's avatar
csongor committed
976
        any_zero_Q = np.any(map(lambda z: (z == 0), self.get_val()))
csongor's avatar
csongor committed
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
        if any_zero_Q:
            raise AttributeError(
                about._errors.cstring("ERROR: singular operator."))
        else:
            from nifty.operators.nifty_operators import diagonal_operator
            return diagonal_operator(domain=self.domain,
                                     diag=(1 / self).get_val(),
                                     bare=False,
                                     ishape=self.ishape)

    def plot(self, **kwargs):
        """
            Plots the field values using matplotlib routines.

            Other Parameters
            ----------------
            title : string
                Title of the plot (default= "").
            vmin : scalar
                Minimum value displayed (default=min(x)).
            vmax : scalar
                Maximum value displayed (default=max(x)).
            power : bool
                Whether to plot the power spectrum or the array (default=None).
            unit : string
                The unit of the field values (default="").
            norm : scalar
                A normalization (default=None).
            cmap : cmap
                A color map (default=None).
            cbar : bool
                Whether to show the color bar or not (default=True).
            other : {scalar, ndarray, field}
                Object or tuple of objects to be added (default=None).
            legend : bool
                Whether to show the legend or not (default=False).
            mono : bool
                Whether to plot the monopol of the power spectrum or not
                (default=True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).
            error : {scalar, ndarray, field}
                object indicating some confidence intervall (default=None).
            iter : scalar
                Number of iterations (default: 0).
            kindex : scalar
                The spectral index per irreducible band (default=None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on
                logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to
                ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).

            Notes
            -----
            The applicability of the keyword arguments depends on the
            respective space on which the field is defined. Confer to the
            corresponding :py:meth:`get_plot` method.

        """
        # if a save path is given, set pylab to not-interactive
        remember_interactive = pl.isinteractive()
        pl.matplotlib.interactive(not bool(kwargs.get("save", False)))

        if "codomain" in kwargs:
            kwargs.__delitem__("codomain")
            about.warnings.cprint("WARNING: codomain was removed from kwargs.")

        # draw/save the plot(s)
        self.domain.get_plot(self.val, codomain=self.codomain, **kwargs)

        # restore the pylab interactiveness
        pl.matplotlib.interactive(remember_interactive)

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
1069
1070
1071
1072
1073
1074
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean) + \
               "\n- codomain      = " + repr(self.codomain) + \
               "\n- ishape          = " + str(self.ishape)
csongor's avatar
csongor committed
1075

csongor's avatar
csongor committed
1076
1077
1078
1079
1080
1081
    def sum(self, **kwargs):
        return self._unary_operation(self.get_val(), op='sum', **kwargs)

    def prod(self, **kwargs):
        return self._unary_operation(self.get_val(), op='prod', **kwargs)

csongor's avatar
csongor committed
1082
1083
    def all(self, **kwargs):
        return self._unary_operation(self.get_val(), op='all', **kwargs)
csongor's avatar
csongor committed
1084

csongor's avatar
csongor committed
1085
1086
1087
    def any(self, **kwargs):
        return self._unary_operation(self.get_val(), op='any', **kwargs)

csongor's avatar
csongor committed
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
    def min(self, ignore=False, **kwargs):
        """
            Returns the minimum of the field values.

            Parameters
            ----------
            ignore : bool
                Whether to ignore NANs or not (default: False).

            Returns
            -------
            amin : {scalar, ndarray}
                Minimum field value.

            See Also
            --------
            np.amin, np.nanmin

        """
csongor's avatar
csongor committed
1107
        return self._unary_operation(self.get_val(), op='amin', **kwargs)
csongor's avatar
csongor committed
1108
1109

    def nanmin(self, **kwargs):
csongor's avatar
csongor committed
1110
        return self._unary_operation(self.get_val(), op='nanmin', **kwargs)
csongor's avatar
csongor committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130

    def max(self, **kwargs):
        """
            Returns the maximum of the field values.

            Parameters
            ----------
            ignore : bool
                Whether to ignore NANs or not (default: False).

            Returns
            -------
            amax : {scalar, ndarray}
                Maximum field value.

            See Also
            --------
            np.amax, np.nanmax

        """
csongor's avatar
csongor committed
1131
        return self._unary_operation(self.get_val(), op='amax', **kwargs)
csongor's avatar
csongor committed
1132
1133

    def nanmax(self, **kwargs):
csongor's avatar
csongor committed
1134
        return self._unary_operation(self.get_val(), op='nanmax', **kwargs)
csongor's avatar
csongor committed
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

    def median(self, **kwargs):
        """
            Returns the median of the field values.

            Returns
            -------
            med : scalar
                Median field value.

            See Also
            --------
            np.median

        """
csongor's avatar
csongor committed
1150
        return self._unary_operation(self.get_val(), op='median',
csongor's avatar
csongor committed
1151
                                     **kwargs)
csongor's avatar
csongor committed
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

    def mean(self, **kwargs):
        """
            Returns the mean of the field values.

            Returns
            -------
            mean : scalar
                Mean field value.

            See Also
            --------
            np.mean

        """
csongor's avatar
csongor committed
1167
        return self._unary_operation(self.get_val(), op='mean',
csongor's avatar
csongor committed
1168
                                     **kwargs)
csongor's avatar
csongor committed
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

    def std(self, **kwargs):
        """
            Returns the standard deviation of the field values.

            Returns
            -------
            std : scalar
                Standard deviation of the field values.

            See Also
            --------
            np.std

        """
csongor's avatar
csongor committed
1184
        return self._unary_operation(self.get_val(), op='std',
csongor's avatar
csongor committed
1185
                                     **kwargs)
csongor's avatar
csongor committed
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

    def var(self, **kwargs):
        """
            Returns the variance of the field values.

            Returns
            -------
            var : scalar
                Variance of the field values.

            See Also
            --------
            np.var

        """
csongor's avatar
csongor committed
1201
        return self._unary_operation(self.get_val(), op='var',
csongor's avatar
csongor committed
1202
                                     **kwargs)
csongor's avatar
csongor committed
1203

1204
    def argmin(self, split=False, **kwargs):
csongor's avatar
csongor committed
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
        """
            Returns the index of the minimum field value.

            Parameters
            ----------
            split : bool
                Whether to split (unravel) the flat index or not; does not
                apply to multiple indices along some axis (default: True).

            Returns
            -------
            ind : {integer, tuple, array}
                Index of the minimum field value being an integer for
                one-dimensional fields, a tuple for multi-dimensional fields,
                and an array in case minima along some axis are requested.

            See Also
            --------
            np.argmax, np.argmin

        """
        if split:
csongor's avatar
csongor committed
1227
            return self._unary_operation(self.get_val(), op='argmin_nonflat',
csongor's avatar
csongor committed
1228
                                         **kwargs)
csongor's avatar
csongor committed
1229
        else:
csongor's avatar
csongor committed
1230
            return self._unary_operation(self.get_val(), op='argmin',
csongor's avatar
csongor committed
1231
                                         **kwargs)
csongor's avatar
csongor committed
1232

1233
    def argmax(self, split=False, **kwargs):
csongor's avatar
csongor committed
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
        """
            Returns the index of the maximum field value.

            Parameters
            ----------
            split : bool
                Whether to split (unravel) the flat index or not; does not
                apply to multiple indices along some axis (default: True).

            Returns
            -------
            ind : {integer, tuple, array}
                Index of the maximum field value being an integer for
                one-dimensional fields, a tuple for multi-dimensional fields,
                and an array in case maxima along some axis are requested.

            See Also
            --------
            np.argmax, np.argmin

        """
        if split:
csongor's avatar
csongor committed
1256
            return self._unary_operation(self.get_val(), op='argmax_nonflat',
csongor's avatar
csongor committed
1257
                                         **kwargs)
csongor's avatar
csongor committed
1258
        else:
csongor's avatar
csongor committed
1259
            return self._unary_operation(self.get_val(), op='argmax',
csongor's avatar
csongor committed
1260
                                         **kwargs)
csongor's avatar
csongor committed
1261
1262
1263
1264
1265

    # TODO: Implement the full range of unary and binary operotions

    def __pos__(self):
        new_field = self.copy_empty()
csongor's avatar
csongor committed
1266
        new_val = self._unary_operation(self.get_val(), op='pos')
csongor's avatar
csongor committed
1267
1268
1269
1270
1271
        new_field.set_val(new_val=new_val)
        return new_field

    def __neg__(self):
        new_field = self.copy_empty()
csongor's avatar
csongor committed
1272
        new_val = self._unary_operation(self.get_val(), op='neg')
csongor's avatar
csongor committed
1273
1274
1275
1276
1277
        new_field.set_val(new_val=new_val)
        return new_field

    def __abs__(self):
        new_field = self.copy_empty()
csongor's avatar
csongor committed
1278
        new_val = self._unary_operation(self.get_val(), op='abs')
csongor's avatar
csongor committed
1279
1280
1281
1282
1283
        new_field.set_val(new_val=new_val)
        return new_field

    def _binary_helper(self, other, op='None', inplace=False):
        # if other is a field, make sure that the domains match
1284
1285
        if isinstance(other, Field):
            other = Field(domain=self.domain,
csongor's avatar
csongor committed
1286
1287
1288
1289
1290
1291
1292
1293
1294
                          val=other,
                          codomain=self.codomain,
                          copy=False)
        try:
            other_val = other.get_val()
        except AttributeError:
            other_val = other

        # bring other_val into the right shape
1295
        other_val = self._cast_to_d2o(other_val)
csongor's avatar
csongor committed
1296

csongor's avatar
csongor committed
1297
        new_val = map(
1298
            lambda z1, z2: self._binary_operation(z1, z2, op=op, cast=0),
csongor's avatar
csongor committed
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
            self.get_val(),
            other_val)

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

        working_field.set_val(new_val=new_val)
        return working_field

csongor's avatar
csongor committed
1310
    def _unary_operation(self, x, op='None', axis=None, **kwargs):
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
        """
        x must be a numpy array which is compatible with the space!
        Valid operations are

        """
        translation = {'pos': lambda y: getattr(y, '__pos__')(),
                       'neg': lambda y: getattr(y, '__neg__')(),
                       'abs': lambda y: getattr(y, '__abs__')(),
                       'real': lambda y: getattr(y, 'real'),
                       'imag': lambda y: getattr(y, 'imag'),
                       'nanmin': lambda y: getattr(y, 'nanmin')(axis=axis),
                       'amin': lambda y: getattr(y, 'amin')(axis=axis),
                       'nanmax': lambda y: getattr(y, 'nanmax')(axis=axis),
                       'amax': lambda y: getattr(y, 'amax')(axis=axis),
                       'median': lambda y: getattr(y, 'median')(axis=axis),
                       'mean': lambda y: getattr(y, 'mean')(axis=axis),
                       'std': lambda y: getattr(y, 'std')(axis=axis),
                       'var': lambda y: getattr(y, 'var')(axis=axis),
1329
1330
1331
                       'argmin_nonflat': lambda y: getattr(y,
                                                           'argmin_nonflat')(
                                                               axis=axis),
1332
                       'argmin': lambda y: getattr(y, 'argmin')(axis=axis),
1333
1334
1335
                       'argmax_nonflat': lambda y: getattr(y,
                                                           'argmax_nonflat')(
                                                               axis=axis),
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
                       'argmax': lambda y: getattr(y, 'argmax')(axis=axis),
                       'conjugate': lambda y: getattr(y, 'conjugate')(),
                       'sum': lambda y: getattr(y, 'sum')(axis=axis),
                       'prod': lambda y: getattr(y, 'prod')(axis=axis),
                       'unique': lambda y: getattr(y, 'unique')(),
                       'copy': lambda y: getattr(y, 'copy')(),
                       'copy_empty': lambda y: getattr(y, 'copy_empty')(),
                       'isnan': lambda y: getattr(y, 'isnan')(),
                       'isinf': lambda y: getattr(y, 'isinf')(),
                       'isfinite': lambda y: getattr(y, 'isfinite')(),
                       'nan_to_num': lambda y: getattr(y, 'nan_to_num')(),
                       'all': lambda y: getattr(y, 'all')(axis=axis),
                       'any': lambda y: getattr(y, 'any')(axis=axis),
                       'None': lambda y: y}

        return translation[op](x, **kwargs)

1353
    def _binary_operation(self, x, y, op='None', cast=0):
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

        translation = {'add': lambda z: getattr(z, '__add__'),
                       'radd': lambda z: getattr(z, '__radd__'),
                       'iadd': lambda z: getattr(z, '__iadd__'),
                       'sub': lambda z: getattr(z, '__sub__'),
                       'rsub': lambda z: getattr(z, '__rsub__'),
                       'isub': lambda z: getattr(z, '__isub__'),
                       'mul': lambda z: getattr(z, '__mul__'),
                       'rmul': lambda z: getattr(z, '__rmul__'),
                       'imul': lambda z: getattr(z, '__imul__'),
                       'div': lambda z: getattr(z, '__div__'),
                       'rdiv': lambda z: getattr(z, '__rdiv__'),
                       'idiv': lambda z: getattr(z, '__idiv__'),
                       'pow': lambda z: getattr(z, '__pow__'),
                       'rpow': lambda z: getattr(z, '__rpow__'),
                       'ipow': lambda z: getattr(z, '__ipow__'),
                       'ne': lambda z: getattr(z, '__ne__'),
                       'lt': lambda z: getattr(z, '__lt__'),
                       'le': lambda z: getattr(z, '__le__'),
                       'eq': lambda z: getattr(z, '__eq__'),
                       'ge': lambda z: getattr(z, '__ge__'),
                       'gt': lambda z: getattr(z, '__gt__'),
                       'None': lambda z: lambda u: u}

        if (cast & 1) != 0:
            x = self.cast(x)
        if (cast & 2) != 0:
            y = self.cast(y)

        return translation[op](x)(y)

csongor's avatar
csongor committed
1385
1386
    def __add__(self, other):
        return self._binary_helper(other, op='add')
1387

csongor's avatar
csongor committed
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
    __radd__ = __add__

    def __iadd__(self, other):
        return self._binary_helper(other, op='iadd', inplace=True)

    def __sub__(self, other):
        return self._binary_helper(other, op='sub')

    def __rsub__(self, other):
        return self._binary_helper(other, op='rsub')

    def __isub__(self, other):
        return self._binary_helper(other, op='isub', inplace=True)

    def __mul__(self, other):
        return self._binary_helper(other, op='mul')
1404

csongor's avatar
csongor committed
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
    __rmul__ = __mul__

    def __imul__(self, other):
        return self._binary_helper(other, op='imul', inplace=True)

    def __div__(self, other):
        return self._binary_helper(other, op='div')

    def __rdiv__(self, other):
        return self._binary_helper(other, op='rdiv')

    def __idiv__(self, other):
        return self._binary_helper(other, op='idiv', inplace=True)
1418

csongor's avatar
csongor committed
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
    __truediv__ = __div__
    __itruediv__ = __idiv__

    def __pow__(self, other):
        return self._binary_helper(other, op='pow')

    def __rpow__(self, other):
        return self._binary_helper(other, op='rpow')

    def __ipow__(self, other):
        return self._binary_helper(other, op='ipow', inplace=True)

    def __lt__(self, other):
        return self._binary_helper(other, op='lt')

    def __le__(self, other):
        return self._binary_helper(other, op='le')

    def __ne__(self, other):
        if other is None:
            return True
        else:
            return self._binary_helper(other, op='ne')

    def __eq__(self, other):
        if other is None:
            return False
        else:
            return self._binary_helper(other, op='eq')

    def __ge__(self, other):
        return self._binary_helper(other, op='ge')

    def __gt__(self, other):
        return self._binary_helper(other, op='gt')

1455

1456
class EmptyField(Field):