demo_wf3.py 3.66 KB
Newer Older
Marco Selig's avatar
Marco Selig committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2013 Max-Planck-Society
##
## Author: Marco Selig
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  demo
    ..                               /______/

    NIFTY demo applying a Wiener filter using explicit matrices.

"""
from __future__ import division
from nifty import *                                                   # version 0.7.0


38
if __name__ == "__main__":
Marco Selig's avatar
Marco Selig committed
39 40


41 42
    # some signal space; e.g., a one-dimensional regular grid
    x_space = rg_space([128,])                                               # define signal space
Marco Selig's avatar
Marco Selig committed
43

44
    k_space = x_space.get_codomain()                                      # get conjugate space
Marco Selig's avatar
Marco Selig committed
45

46 47
    # some power spectrum
    power = (lambda k: 42 / (k + 1) ** 3)
Marco Selig's avatar
Marco Selig committed
48

49 50 51
    S = power_operator(k_space, spec=power)                               # define signal covariance
    s = S.get_random_field(domain=x_space)                                # generate signal
    s -= s.val.mean()
Marco Selig's avatar
Marco Selig committed
52

53 54
    R = response_operator(x_space, sigma=0.0, mask=1.0, assign=None)      # define response
    d_space = R.target                                                    # get data space
Marco Selig's avatar
Marco Selig committed
55

56 57 58 59
    # some noise variance
    delta = 1000 * (np.arange(1, x_space.dim() + 1) / x_space.dim()) ** 5
    N = diagonal_operator(d_space, diag=delta, bare=True)                 # define noise covariance
    n = N.get_random_field(domain=d_space)                                # generate noise
Marco Selig's avatar
Marco Selig committed
60

61
    d = R(s) + n                                                          # compute data
Marco Selig's avatar
Marco Selig committed
62

63
    j = R.adjoint_times(N.inverse_times(d))                               # define information source
Marco Selig's avatar
Marco Selig committed
64 65


66
    class M_operator(operator):
Marco Selig's avatar
Marco Selig committed
67

68 69 70
        def _multiply(self, x):
            N, R = self.para
            return R.adjoint_times(N.inverse_times(R.times(x)))
Marco Selig's avatar
Marco Selig committed
71 72


73 74 75 76 77 78 79 80 81
    C = explicify(S, newdomain=x_space, newtarget=x_space)                # explicify S
    M = M_operator(x_space, sym=True, uni=False, imp=True, para=(N, R))
    M = explicify(M)                                                      # explicify M
    D = (C.inverse() + M).inverse()                                       # define information propagator

    m = D(j)                                                              # reconstruct map

    vminmax = {"vmin":1.5 * s.val.min(), "vmax":1.5 * s.val.max()}
    s.plot(title="signal", **vminmax)                                     # plot signal
82
    d_ = Field(x_space, val=d.val, target=k_space)
83 84 85
    d_.plot(title="data", **vminmax)                                      # plot data
    m.plot(title="reconstructed map", error=D.diag(bare=True), **vminmax) # plot map
    D.plot(title="information propagator", bare=True)                     # plot information propagator
Marco Selig's avatar
Marco Selig committed
86