sugar.py 8.68 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

19
import sys
20
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
21
from .domains.power_space import PowerSpace
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
22
from .field import Field
Martin Reinecke's avatar
fix    
Martin Reinecke committed
23
24
from .multi.multi_field import MultiField
from .multi.multi_domain import MultiDomain
Martin Reinecke's avatar
Martin Reinecke committed
25
from .operators.diagonal_operator import DiagonalOperator
Martin Reinecke's avatar
Martin Reinecke committed
26
from .operators.power_distributor import PowerDistributor
Martin Reinecke's avatar
Martin Reinecke committed
27
28
from .domain_tuple import DomainTuple
from . import dobj, utilities
Martin Reinecke's avatar
Martin Reinecke committed
29
from .logger import logger
30

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
31
32
33
__all__ = ['PS_field', 'power_analyze', 'create_power_operator',
           'create_harmonic_smoothing_operator', 'from_random',
           'full', 'empty', 'from_global_data', 'from_local_data',
34
           'makeDomain', 'sqrt', 'exp', 'log', 'tanh', 'conjugate']
35
36


37
def PS_field(pspace, func):
Martin Reinecke's avatar
Martin Reinecke committed
38
39
40
    if not isinstance(pspace, PowerSpace):
        raise TypeError
    data = dobj.from_global_data(func(pspace.k_lengths))
41
    return Field(pspace, val=data)
Martin Reinecke's avatar
Martin Reinecke committed
42

Martin Reinecke's avatar
Martin Reinecke committed
43

44
45
def _single_power_analyze(field, idx, binbounds):
    power_domain = PowerSpace(field.domain[idx], binbounds)
Martin Reinecke's avatar
Martin Reinecke committed
46
47
    pd = PowerDistributor(field.domain, power_domain, idx)
    return pd.adjoint_times(field.weight(1)).weight(-1)  # divides by bin size
48
49


Martin Reinecke's avatar
Martin Reinecke committed
50
51
# MR FIXME: this function is not well suited for analyzing more than one
# subdomain at once, because it allows only one set of binbounds.
52
53
def power_analyze(field, spaces=None, binbounds=None,
                  keep_phase_information=False):
Martin Reinecke's avatar
Martin Reinecke committed
54
    """ Computes the power spectrum for a subspace of `field`.
55
56
57
58

    Creates a PowerSpace for the space addressed by `spaces` with the given
    binning and computes the power spectrum as a Field over this
    PowerSpace. This can only be done if the subspace to  be analyzed is a
Martin Reinecke's avatar
Martin Reinecke committed
59
60
    harmonic space. The resulting field has the same units as the square of the
    initial field.
61
62
63
64
65

    Parameters
    ----------
    field : Field
        The field to be analyzed
Martin Reinecke's avatar
Martin Reinecke committed
66
67
68
    spaces : None or int or tuple of int, optional
        The indices of subdomains for which the power spectrum shall be
        computed.
Martin Reinecke's avatar
Martin Reinecke committed
69
        If None, all subdomains will be converted.
70
        (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
71
    binbounds : None or array-like, optional
72
        Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
73
74
        if binbounds is None : bins are inferred.
    keep_phase_information : bool, optional
75
76
77
78
79
80
81
82
83
84
85
86
        If False, return a real-valued result containing the power spectrum
        of the input Field.
        If True, return a complex-valued result whose real component
        contains the power spectrum computed from the real part of the
        input Field, and whose imaginary component contains the power
        spectrum computed from the imaginary part of the input Field.
        The absolute value of this result should be identical to the output
        of power_analyze with keep_phase_information=False.
        (default : False).

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
87
    Field
88
        The output object. Its domain is a PowerSpace and it contains
Martin Reinecke's avatar
Martin Reinecke committed
89
        the power spectrum of `field`.
90
91
92
93
    """

    for sp in field.domain:
        if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
94
95
            logger.warning("WARNING: Field has a space in `domain` which is "
                           "neither harmonic nor a PowerSpace.")
96

97
    spaces = utilities.parse_spaces(spaces, len(field.domain))
98
99
100
101

    if len(spaces) == 0:
        raise ValueError("No space for analysis specified.")

102
103
104
105
    field_real = not np.issubdtype(field.dtype, np.complexfloating)
    if (not field_real) and keep_phase_information:
        raise ValueError("cannot keep phase from real-valued input Field")

106
107
108
    if keep_phase_information:
        parts = [field.real*field.real, field.imag*field.imag]
    else:
109
110
111
112
        if field_real:
            parts = [field**2]
        else:
            parts = [field.real*field.real + field.imag*field.imag]
113
114

    for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
115
        parts = [_single_power_analyze(part, space_index, binbounds)
116
117
118
119
120
                 for part in parts]

    return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]


Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
121
def _create_power_field(domain, power_spectrum):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
122
123
124
125
126
127
128
129
    if not callable(power_spectrum):  # we have a Field living on a PowerSpace
        if not isinstance(power_spectrum, Field):
            raise TypeError("Field object expected")
        if len(power_spectrum.domain) != 1:
            raise ValueError("exactly one domain required")
        if not isinstance(power_spectrum.domain[0], PowerSpace):
            raise TypeError("PowerSpace required")
        power_domain = power_spectrum.domain[0]
130
        fp = Field(power_domain, val=power_spectrum.val)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
131
132
    else:
        power_domain = PowerSpace(domain)
133
        fp = PS_field(power_domain, power_spectrum)
134

Martin Reinecke's avatar
Martin Reinecke committed
135
    return PowerDistributor(domain, power_domain)(fp)
136

137

138
def create_power_operator(domain, power_spectrum, space=None):
Theo Steininger's avatar
Theo Steininger committed
139
    """ Creates a diagonal operator with the given power spectrum.
140

141
    Constructs a diagonal operator that lives over the specified domain.
142

143
144
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
145
    domain : Domain, tuple of Domain or DomainTuple
146
        Domain over which the power operator shall live.
Martin Reinecke's avatar
Martin Reinecke committed
147
148
    power_spectrum : callable or Field
        An object that contains the power spectrum as a function of k.
Martin Reinecke's avatar
Martin Reinecke committed
149
    space : int
Martin Reinecke's avatar
Martin Reinecke committed
150
        the domain index on which the power operator will work
Theo Steininger's avatar
Theo Steininger committed
151

152
153
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
154
155
    DiagonalOperator
        An operator that implements the given power spectrum.
156
    """
Martin Reinecke's avatar
Martin Reinecke committed
157
    domain = DomainTuple.make(domain)
Martin Reinecke's avatar
Martin Reinecke committed
158
    space = utilities.infer_space(domain, space)
Martin Reinecke's avatar
Martin Reinecke committed
159
160
    field = _create_power_field(domain[space], power_spectrum)
    return DiagonalOperator(field, domain, space)
161

162

163
164
165
166
def create_harmonic_smoothing_operator(domain, space, sigma):
    kfunc = domain[space].get_fft_smoothing_kernel_function(sigma)
    return DiagonalOperator(kfunc(domain[space].get_k_length_array()), domain,
                            space)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202


def full(domain, val):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.full(domain, val)
    return Field.full(domain, val)


def empty(domain, dtype):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.empty(domain, dtype)
    return Field.empty(domain, dtype)


def from_random(random_type, domain, dtype=np.float64, **kwargs):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_random(random_type, domain, dtype, **kwargs)
    return Field.from_random(random_type, domain, dtype, **kwargs)


def from_global_data(domain, arr, sum_up=False):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_global_data(domain, arr, sum_up)
    return Field.from_global_data(domain, arr, sum_up)


def from_local_data(domain, arr):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_local_data(domain, arr)
    return Field.from_local_data(domain, arr)


def makeDomain(domain):
    if isinstance(domain, dict):
        return MultiDomain.make(domain)
    return DomainTuple.make(domain)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220


# Arithmetic functions working on Fields

_current_module = sys.modules[__name__]

for f in ["sqrt", "exp", "log", "tanh", "conjugate"]:
    def func(f):
        def func2(x, out=None):
            if isinstance(x, MultiField):
                if out is not None:
                    if (not isinstance(out, MultiField) or
                            x._domain != out._domain):
                        raise ValueError("Bad 'out' argument")
                    for key, value in x.items():
                        func2(value, out=out[key])
                    return out
                return MultiField({key: func2(val) for key, val in x.items()})
221
222
223
224
225
226
227
228
229
            elif isinstance(x, Field):
                fu = getattr(dobj, f)
                if out is not None:
                    if not isinstance(out, Field) or x._domain != out._domain:
                        raise ValueError("Bad 'out' argument")
                    fu(x.val, out=out.val)
                    return out
                else:
                    return Field(domain=x._domain, val=fu(x.val))
230
            else:
231
                return getattr(np, f)(x, out)
232
233
        return func2
    setattr(_current_module, f, func(f))