plot.py 7.9 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
from __future__ import division
import numpy as np
from ..import Field, RGSpace, HPSpace, GLSpace, PowerSpace
import os

# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
15

Martin Reinecke's avatar
Martin Reinecke committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
    res = np.full(shape=(ysize, xsize), fill_value=np.nan,
                  dtype=np.float64)
    xc = (xsize-1)*0.5
    yc = (ysize-1)*0.5
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
    u = 2*(u-xc)/(xc/1.02)
    v = (v-yc)/(yc/1.02)

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
35

Martin Reinecke's avatar
Martin Reinecke committed
36
37
38
39
40
41
42
43
44
def _find_closest(A, target):
    # A must be sorted
    idx = A.searchsorted(target)
    idx = np.clip(idx, 1, len(A)-1)
    left = A[idx-1]
    right = A[idx]
    idx -= target - left < right - target
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
45

Martin Reinecke's avatar
Martin Reinecke committed
46
def _makeplot(name):
47
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
48
49
50
51
    if name is None:
        plt.show()
        return
    extension = os.path.splitext(name)[1]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
52
    if extension == ".pdf":
Martin Reinecke's avatar
Martin Reinecke committed
53
54
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
55
    elif extension == ".png":
Martin Reinecke's avatar
Martin Reinecke committed
56
57
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
58
59
60
61
62
63
64
65
66
67
    # elif extension==".html":
        # import mpld3
        # mpld3.save_html(plt.gcf(),fileobj=name,no_extras=True)
        # import plotly.offline as py
        # import plotly.tools as tls
        # plotly_fig = tls.mpl_to_plotly(plt.gcf())
        # py.plot(plotly_fig,filename=name)
        # py.plot_mpl(plt.gcf(),filename=name)
        # import bokeh
        # bokeh.mpl.to_bokeh(plt.gcf())
Martin Reinecke's avatar
Martin Reinecke committed
68
69
70
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
71

Martin Reinecke's avatar
Martin Reinecke committed
72
73
def _limit_xy(**kwargs):
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
74
    x1, x2, y1, y2 = plt.axis()
Martin Reinecke's avatar
Martin Reinecke committed
75
76
77
78
79
80
81
82
    if (kwargs.get("xmin")) is not None:
        x1 = kwargs.get("xmin")
    if (kwargs.get("xmax")) is not None:
        x2 = kwargs.get("xmax")
    if (kwargs.get("ymin")) is not None:
        y1 = kwargs.get("ymin")
    if (kwargs.get("ymax")) is not None:
        y2 = kwargs.get("ymax")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
83
84
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
    planckcmap = {'red':  ((0.0, 0.0, 0.0),
                           (0.4, 0.0, 0.0),
                           (0.5, 1.0, 1.0),
                           (0.7, 1.0, 1.0),
                           (0.8, 0.83, 0.83),
                           (0.9, 0.67, 0.67),
                           (1.0, 0.5, 0.5)),
                  'green':((0.0, 0.0, 0.0),
                           (0.2, 0.0, 0.0),
                           (0.3, 0.3, 0.3),
                           (0.4, 0.7, 0.7),
                           (0.5, 1.0, 1.0),
                           (0.6, 0.7, 0.7),
                           (0.7, 0.3, 0.3),
                           (0.8, 0.0, 0.0),
                           (1.0, 0.0, 0.0)),
                  'blue': ((0.0, 0.5, 0.5),
                           (0.1, 0.67, 0.67),
                           (0.2, 0.83, 0.83),
                           (0.3, 1.0, 1.0),
                           (0.5, 1.0, 1.0),
                           (0.6, 0.0, 0.0),
                           (1.0, 0.0, 0.0)) }
    he_cmap = { 'red':  ((0.0, 0.0, 0.0),
                         (0.167, 0.0, 0.0),
                         (0.333, 0.5, 0.5),
                         (0.5, 1.0, 1.0),
                         (1.0, 1.0, 1.0)),
                'green':((0.0, 0.0, 0.0),
                         (0.5, 0.0, 0.0),
                         (0.667, 0.5, 0.5),
                         (0.833, 1.0, 1.0),
                         (1.0, 1.0, 1.0)),
                'blue': ((0.0, 0.0, 0.0),
                         (0.167, 1.0, 1.0),
                         (0.333, 0.5, 0.5),
                         (0.5, 0.0, 0.0),
                         (1.0, 1.0, 1.0)) }

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))

Martin Reinecke's avatar
Martin Reinecke committed
136

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
137
def plot(f, **kwargs):
138
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
139
    _register_cmaps()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
140
    if not isinstance(f, Field):
Martin Reinecke's avatar
Martin Reinecke committed
141
        raise TypeError("incorrect data type")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
142
    if len(f.domain) != 1:
Martin Reinecke's avatar
Martin Reinecke committed
143
144
145
        raise ValueError("input field must have exactly one domain")

    dom = f.domain[0]
Martin Reinecke's avatar
Martin Reinecke committed
146
    fig = plt.figure()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
147
    ax = fig.add_subplot(1, 1, 1)
Martin Reinecke's avatar
Martin Reinecke committed
148

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
149
    xsize, ysize = 6, 6
Martin Reinecke's avatar
Martin Reinecke committed
150
151
152
153
    if kwargs.get("xsize") is not None:
        xsize = kwargs.get("xsize")
    if kwargs.get("ysize") is not None:
        ysize = kwargs.get("ysize")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
154
    fig.set_size_inches(xsize, ysize)
Martin Reinecke's avatar
Martin Reinecke committed
155

Martin Reinecke's avatar
Martin Reinecke committed
156
157
158
159
160
161
    if kwargs.get("title") is not None:
        ax.set_title(kwargs.get("title"))
    if kwargs.get("xlabel") is not None:
        ax.set_xlabel(kwargs.get("xlabel"))
    if kwargs.get("ylabel") is not None:
        ax.set_ylabel(kwargs.get("ylabel"))
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
162
    cmap = plt.rcParams['image.cmap']
Martin Reinecke's avatar
Martin Reinecke committed
163
164
    if kwargs.get("colormap") is not None:
        cmap = kwargs.get("colormap")
Martin Reinecke's avatar
Martin Reinecke committed
165
    if isinstance(dom, RGSpace):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
166
        if len(dom.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
167
168
            npoints = dom.shape[0]
            dist = dom.distances[0]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
169
            xcoord = np.arange(npoints, dtype=np.float64)*dist
Martin Reinecke's avatar
Martin Reinecke committed
170
171
            ycoord = f.val
            plt.plot(xcoord, ycoord)
Martin Reinecke's avatar
Martin Reinecke committed
172
173
            _limit_xy(**kwargs)
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
174
            return
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
175
        elif len(dom.shape) == 2:
Martin Reinecke's avatar
Martin Reinecke committed
176
177
178
179
            nx = dom.shape[0]
            ny = dom.shape[1]
            dx = dom.distances[0]
            dy = dom.distances[1]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
180
181
182
183
            xc = np.arange(nx, dtype=np.float64)*dx
            yc = np.arange(ny, dtype=np.float64)*dy
            im = ax.imshow(f.val, extent=[xc[0], xc[-1], yc[0], yc[-1]],
                           vmin=kwargs.get("zmin"),
Martin Reinecke's avatar
Martin Reinecke committed
184
                           vmax=kwargs.get("zmax"), cmap=cmap, origin="lower")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
185
186
187
188
            # from mpl_toolkits.axes_grid1 import make_axes_locatable
            # divider = make_axes_locatable(ax)
            # cax = divider.append_axes("right", size="5%", pad=0.05)
            # plt.colorbar(im,cax=cax)
Martin Reinecke's avatar
Martin Reinecke committed
189
190
191
            plt.colorbar(im)
            _limit_xy(**kwargs)
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
192
193
194
195
196
197
198
199
            return
    elif isinstance(dom, PowerSpace):
        xcoord = dom.kindex
        ycoord = f.val
        plt.xscale('log')
        plt.yscale('log')
        plt.title('power')
        plt.plot(xcoord, ycoord)
Martin Reinecke's avatar
Martin Reinecke committed
200
201
        _limit_xy(**kwargs)
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
202
203
204
205
206
207
208
209
210
211
212
213
        return
    elif isinstance(dom, HPSpace):
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)

        ptg = np.empty((phi.size, 2), dtype=np.float64)
        ptg[:, 0] = theta
        ptg[:, 1] = phi
        base = pyHealpix.Healpix_Base(int(np.sqrt(f.val.size//12)), "RING")
        res[mask] = f.val[base.ang2pix(ptg)]
        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
214
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
215
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
216
217
        plt.colorbar(orientation="horizontal")
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
218
219
220
221
222
223
224
225
226
227
228
229
230
        return
    elif isinstance(dom, GLSpace):
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
        ra = np.linspace(0, 2*np.pi, dom.nlon+1)
        dec = pyHealpix.GL_thetas(dom.nlat)
        ilat = _find_closest(dec, theta)
        ilon = _find_closest(ra, phi)
        ilon = np.where(ilon == dom.nlon, 0, ilon)
        res[mask] = f.val[ilat*dom.nlon + ilon]

        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
231
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
232
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
233
234
        plt.colorbar(orientation="horizontal")
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
235
236
237
        return

    raise ValueError("Field type not(yet) supported")