correlated_fields.py 29.3 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2020 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras, Philipp Haim
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

19 20 21
from functools import reduce
from operator import mul

Philipp Arras's avatar
Philipp Arras committed
22
import numpy as np
23

Philipp Arras's avatar
Philipp Arras committed
24
from .. import utilities
Philipp Arras's avatar
Philipp Arras committed
25
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
26 27
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
Philipp Arras's avatar
Philipp Arras committed
28
from ..field import Field
29
from ..logger import logger
Philipp Arras's avatar
Philipp Arras committed
30
from ..multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
31
from ..operators.adder import Adder
32
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.diagonal_operator import DiagonalOperator
Philipp Arras's avatar
Philipp Arras committed
34
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
35
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
36
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
37
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
38
from ..operators.operator import Operator
Philipp Arras's avatar
Philipp Arras committed
39
from ..operators.simple_linear_operators import ducktape
40
from ..operators.normal_operators import NormalTransform, LognormalTransform
41
from ..probing import StatCalculator
Philipp Arras's avatar
Philipp Arras committed
42
from ..sugar import full, makeDomain, makeField, makeOp
43

44

Philipp Arras's avatar
Philipp Arras committed
45
def _log_k_lengths(pspace):
Philipp Arras's avatar
Philipp Arras committed
46
    """Log(k_lengths) without zeromode"""
Philipp Arras's avatar
Philipp Arras committed
47 48 49
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
50
def _relative_log_k_lengths(power_space):
Philipp Arras's avatar
Philipp Arras committed
51 52
    """Log-distance to first bin
    logkl.shape==power_space.shape, logkl[0]=logkl[1]=0"""
Philipp Arras's avatar
Philipp Arras committed
53 54 55 56 57 58
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
Philipp Arras's avatar
Philipp Arras committed
59
    return np.insert(logkl, 0, 0)
Philipp Arras's avatar
Philipp Arras committed
60 61


Philipp Arras's avatar
Philipp Arras committed
62
def _log_vol(power_space):
63
    power_space = makeDomain(power_space)
Philipp Arras's avatar
Philipp Arras committed
64 65 66 67 68
    assert isinstance(power_space[0], PowerSpace)
    logk_lengths = _log_k_lengths(power_space[0])
    return logk_lengths[1:] - logk_lengths[:-1]


Philipp Haim's avatar
Philipp Haim committed
69 70 71 72 73 74
def _structured_spaces(domain):
    if isinstance(domain[0], UnstructuredDomain):
        return np.arange(1, len(domain))
    return np.arange(len(domain))


Philipp Haim's avatar
Philipp Haim committed
75
def _total_fluctuation_realized(samples):
Philipp Haim's avatar
Philipp Haim committed
76 77 78
    spaces = _structured_spaces(samples[0].domain)
    co = ContractionOperator(samples[0].domain, spaces)
    size = co.domain.size/co.target.size
79 80
    res = 0.
    for s in samples:
Philipp Haim's avatar
Philipp Haim committed
81 82
        res = res + (s - co.adjoint(co(s)/size))**2
    res = res.mean(spaces)/len(samples)
Philipp Haim's avatar
Philipp Haim committed
83
    return np.sqrt(res if np.isscalar(res) else res.val)
84 85


Philipp Frank's avatar
Philipp Frank committed
86
class _SlopeRemover(EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
87
    def __init__(self, domain, space=0):
Philipp Frank's avatar
Philipp Frank committed
88
        self._domain = makeDomain(domain)
89 90
        assert isinstance(self._domain[space], PowerSpace)
        logkl = _relative_log_k_lengths(self._domain[space])
91
        self._sc = logkl/float(logkl[-1])
Philipp Arras's avatar
Philipp Arras committed
92

93
        self._space = space
Philipp Haim's avatar
Philipp Haim committed
94 95 96
        axis = self._domain.axes[space][0]
        self._last = (slice(None),)*axis + (-1,) + (None,)
        self._extender = (None,)*(axis) + (slice(None),) + (None,)*(self._domain.axes[-1][-1]-axis)
Philipp Frank's avatar
Philipp Frank committed
97
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
98

99 100
    def apply(self, x, mode):
        self._check_input(x, mode)
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
101
        x = x.val
Philipp Frank's avatar
Philipp Frank committed
102
        if mode == self.TIMES:
Philipp Haim's avatar
Philipp Haim committed
103
            res = x - x[self._last]*self._sc[self._extender]
Philipp Frank's avatar
Philipp Frank committed
104
        else:
105 106
            res = x.copy()
            res[self._last] -= (x*self._sc[self._extender]).sum(
Philipp Arras's avatar
Philipp Arras committed
107
                axis=self._space, keepdims=True)
Martin Reinecke's avatar
Martin Reinecke committed
108
        return makeField(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
109

Philipp Arras's avatar
Philipp Arras committed
110 111

class _TwoLogIntegrations(LinearOperator):
Martin Reinecke's avatar
Martin Reinecke committed
112
    def __init__(self, target, space=0):
Philipp Arras's avatar
Philipp Arras committed
113
        self._target = makeDomain(target)
114 115 116 117 118
        assert isinstance(self.target[space], PowerSpace)
        dom = list(self._target)
        dom[space] = UnstructuredDomain((2, self.target[space].shape[0]-2))
        self._domain = makeDomain(dom)
        self._space = space
119
        self._log_vol = _log_vol(self._target[space])
Philipp Arras's avatar
Philipp Arras committed
120 121 122 123
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
124

Martin Reinecke's avatar
Martin Reinecke committed
125
        # Maybe make class properties
126 127
        axis = self._target.axes[self._space][0]
        sl = (slice(None),)*axis
Philipp Haim's avatar
Fixes  
Philipp Haim committed
128
        extender_sl = (None,)*axis + (slice(None),) + (None,)*(self._target.axes[-1][-1] - axis)
129 130
        first = sl + (0,)
        second = sl + (1,)
Martin Reinecke's avatar
Martin Reinecke committed
131 132 133
        from_third = sl + (slice(2, None),)
        no_border = sl + (slice(1, -1),)
        reverse = sl + (slice(None, None, -1),)
134

Philipp Arras's avatar
Philipp Arras committed
135
        if mode == self.TIMES:
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
136
            x = x.val
Philipp Arras's avatar
Philipp Arras committed
137
            res = np.empty(self._target.shape)
138
            res[first] = res[second] = 0
Martin Reinecke's avatar
Martin Reinecke committed
139
            res[from_third] = np.cumsum(x[second], axis=axis)
140
            res[from_third] = (res[from_third] + res[no_border])/2*self._log_vol[extender_sl] + x[first]
Martin Reinecke's avatar
Martin Reinecke committed
141
            res[from_third] = np.cumsum(res[from_third], axis=axis)
Philipp Arras's avatar
Philipp Arras committed
142
        else:
Martin Reinecke's avatar
Martin Reinecke committed
143
            x = x.val_rw()
Philipp Arras's avatar
Philipp Arras committed
144
            res = np.zeros(self._domain.shape)
Martin Reinecke's avatar
Martin Reinecke committed
145
            x[from_third] = np.cumsum(x[from_third][reverse], axis=axis)[reverse]
146
            res[first] += x[from_third]
147
            x[from_third] *= (self._log_vol/2.)[extender_sl]
148
            x[no_border] += x[from_third]
Martin Reinecke's avatar
Martin Reinecke committed
149
            res[second] += np.cumsum(x[from_third][reverse], axis=axis)[reverse]
Martin Reinecke's avatar
Martin Reinecke committed
150
        return makeField(self._tgt(mode), res)
Philipp Arras's avatar
Philipp Arras committed
151 152 153


class _Normalization(Operator):
Martin Reinecke's avatar
Martin Reinecke committed
154
    def __init__(self, domain, space=0):
Philipp Arras's avatar
Philipp Arras committed
155
        self._domain = self._target = DomainTuple.make(domain)
156
        assert isinstance(self._domain[space], PowerSpace)
157 158 159
        hspace = list(self._domain)
        hspace[space] = hspace[space].harmonic_partner
        hspace = makeDomain(hspace)
Philipp Arras's avatar
Philipp Arras committed
160 161 162
        pd = PowerDistributor(hspace,
                              power_space=self._domain[space],
                              space=space)
Martin Reinecke's avatar
Martin Reinecke committed
163
        mode_multiplicity = pd.adjoint(full(pd.target, 1.)).val_rw()
164
        zero_mode = (slice(None),)*self._domain.axes[space][0] + (0,)
Philipp Haim's avatar
Philipp Haim committed
165
        mode_multiplicity[zero_mode] = 0
Philipp Arras's avatar
Philipp Arras committed
166 167
        multipl = makeOp(makeField(self._domain, mode_multiplicity))
        self._specsum = _SpecialSum(self._domain, space) @ multipl
Philipp Arras's avatar
Philipp Arras committed
168 169 170

    def apply(self, x):
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
171
        amp = x.ptw("exp")
172
        spec = amp**2
Philipp Arras's avatar
Philipp Arras committed
173 174
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
Philipp Arras's avatar
Philipp Arras committed
175
        return self._specsum(spec)**(-0.5)*amp
Philipp Arras's avatar
Philipp Arras committed
176 177 178


class _SpecialSum(EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
179
    def __init__(self, domain, space=0):
Philipp Arras's avatar
Philipp Arras committed
180 181
        self._domain = makeDomain(domain)
        self._capability = self.TIMES | self.ADJOINT_TIMES
182
        self._contractor = ContractionOperator(domain, space)
Philipp Arras's avatar
Philipp Arras committed
183 184 185

    def apply(self, x, mode):
        self._check_input(x, mode)
186
        return self._contractor.adjoint(self._contractor(x))
Philipp Arras's avatar
Philipp Arras committed
187 188


Philipp Haim's avatar
Philipp Haim committed
189
class _Distributor(LinearOperator):
Lukas Platz's avatar
Lukas Platz committed
190
    def __init__(self, dofdex, domain, target):
191 192 193
        self._dofdex = np.array(dofdex)
        self._target = DomainTuple.make(target)
        self._domain = DomainTuple.make(domain)
Philipp Haim's avatar
Philipp Haim committed
194 195 196 197
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
198
        x = x.val
Philipp Haim's avatar
Philipp Haim committed
199 200 201
        if mode == self.TIMES:
            res = x[self._dofdex]
        else:
202
            res = np.zeros(self._tgt(mode).shape, dtype=x.dtype)
203
            res = utilities.special_add_at(res, 0, self._dofdex, x)
Martin Reinecke's avatar
Martin Reinecke committed
204
        return makeField(self._tgt(mode), res)
Martin Reinecke's avatar
Martin Reinecke committed
205

206

207 208
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
209
                 loglogavgslope, azm, totvol, key, dofdex):
Philipp Arras's avatar
Philipp Arras committed
210 211
        """
        fluctuations > 0
212 213
        flexibility > 0 or None
        asperity > 0 or None
Philipp Arras's avatar
Philipp Arras committed
214 215 216
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
217 218
        assert isinstance(flexibility, Operator) or flexibility is None
        assert isinstance(asperity, Operator) or asperity is None
Philipp Arras's avatar
Philipp Arras committed
219 220
        assert isinstance(loglogavgslope, Operator)

Philipp Haim's avatar
Philipp Haim committed
221 222
        if len(dofdex) > 0:
            N_copies = max(dofdex) + 1
Philipp Haim's avatar
Philipp Haim committed
223
            space = 1
Philipp Frank's avatar
cleanup  
Philipp Frank committed
224 225
            distributed_tgt = makeDomain((UnstructuredDomain(len(dofdex)),
                                          target))
Philipp Haim's avatar
Philipp Haim committed
226
            target = makeDomain((UnstructuredDomain(N_copies), target))
Lukas Platz's avatar
Lukas Platz committed
227
            Distributor = _Distributor(dofdex, target, distributed_tgt)
Philipp Haim's avatar
Philipp Haim committed
228
        else:
Philipp Haim's avatar
Philipp Haim committed
229
            N_copies = 0
Philipp Haim's avatar
Philipp Haim committed
230
            space = 0
Philipp Haim's avatar
Philipp Haim committed
231
            distributed_tgt = target = makeDomain(target)
Martin Reinecke's avatar
Martin Reinecke committed
232
        azm_expander = ContractionOperator(distributed_tgt, spaces=space).adjoint
Philipp Haim's avatar
Philipp Haim committed
233
        assert isinstance(target[space], PowerSpace)
Martin Reinecke's avatar
Martin Reinecke committed
234

235
        twolog = _TwoLogIntegrations(target, space)
Philipp Arras's avatar
Philipp Arras committed
236
        dom = twolog.domain
237

238
        shp = dom[space].shape
Martin Reinecke's avatar
Martin Reinecke committed
239 240
        expander = ContractionOperator(dom, spaces=space).adjoint
        ps_expander = ContractionOperator(twolog.target, spaces=space).adjoint
Philipp Arras's avatar
Philipp Arras committed
241 242

        # Prepare constant fields
243 244 245
        vflex = np.zeros(shp)
        vflex[0] = vflex[1] = np.sqrt(_log_vol(target[space]))
        vflex = DiagonalOperator(makeField(dom[space], vflex), dom, space)
Philipp Arras's avatar
Philipp Arras committed
246

247 248 249
        vasp = np.zeros(shp, dtype=np.float64)
        vasp[0] += 1
        vasp = DiagonalOperator(makeField(dom[space], vasp), dom, space)
Philipp Arras's avatar
Philipp Arras committed
250

251 252 253 254
        shift = np.ones(shp)
        shift[0] = _log_vol(target[space])**2 / 12.
        shift = DiagonalOperator(makeField(dom[space], shift), dom, space)
        shift = shift(full(shift.domain, 1))
Martin Reinecke's avatar
Martin Reinecke committed
255

256
        vslope = DiagonalOperator(
Philipp Arras's avatar
Philipp Arras committed
257
            makeField(target[space], _relative_log_k_lengths(target[space])),
Martin Reinecke's avatar
Martin Reinecke committed
258
            target, space)
259

260 261
        vol0, vol1 = [np.zeros(target[space].shape) for _ in range(2)]
        vol1[1:] = vol0[0] = totvol
Philipp Arras's avatar
Philipp Arras committed
262 263
        vol0, vol1 = [
            DiagonalOperator(makeField(target[space], aa), target, space)
264
            for aa in (vol0, vol1)
Philipp Arras's avatar
Philipp Arras committed
265
        ]
266
        vol0 = vol0(full(vol0.domain, 1))
Philipp Arras's avatar
Philipp Arras committed
267 268
        # End prepare constant fields

269
        slope = vslope @ ps_expander @ loglogavgslope
270 271
        sig_flex = vflex @ expander @ flexibility if flexibility is not None else None
        sig_asp = vasp @ expander @ asperity if asperity is not None else None
272
        sig_fluc = vol1 @ ps_expander @ fluctuations
Philipp Haim's avatar
Philipp Haim committed
273
        sig_fluc = vol1 @ ps_expander @ fluctuations
Philipp Arras's avatar
Philipp Arras committed
274

275 276 277 278 279 280 281
        if sig_asp is None and sig_flex is None:
            op = _Normalization(target, space) @ slope
        elif sig_asp is None:
            xi = ducktape(dom, None, key)
            sigma = DiagonalOperator(shift.ptw("sqrt"), dom, space) @ sig_flex
            smooth = _SlopeRemover(target, space) @ twolog @ (sigma * xi)
            op = _Normalization(target, space) @ (slope + smooth)
282 283
        elif sig_flex is None:
            raise ValueError("flexibility may not be disabled on its own")
284 285 286 287 288 289
        else:
            xi = ducktape(dom, None, key)
            sigma = sig_flex * (Adder(shift) @ sig_asp).ptw("sqrt")
            smooth = _SlopeRemover(target, space) @ twolog @ (sigma * xi)
            op = _Normalization(target, space) @ (slope + smooth)

Philipp Haim's avatar
Philipp Haim committed
290
        if N_copies > 0:
Philipp Haim's avatar
Philipp Haim committed
291 292
            op = Distributor @ op
            sig_fluc = Distributor @ sig_fluc
Martin Reinecke's avatar
Martin Reinecke committed
293
            op = Adder(Distributor(vol0)) @ (sig_fluc*(azm_expander @ azm.ptw("reciprocal"))*op)
Philipp Arras's avatar
Philipp Arras committed
294 295
            self._fluc = (_Distributor(dofdex, fluctuations.target,
                                       distributed_tgt[0]) @ fluctuations)
Philipp Haim's avatar
Philipp Haim committed
296
        else:
Martin Reinecke's avatar
Martin Reinecke committed
297
            op = Adder(vol0) @ (sig_fluc*(azm_expander @ azm.ptw("reciprocal"))*op)
Philipp Frank's avatar
fixup  
Philipp Frank committed
298
            self._fluc = fluctuations
Philipp Arras's avatar
Philipp Arras committed
299

Philipp Arras's avatar
Philipp Arras committed
300 301
        self.apply = op.apply
        self._domain, self._target = op.domain, op.target
302
        self._space = space
303
        self._repr_str = "_Amplitude: " + op.__repr__()
Philipp Arras's avatar
Philipp Arras committed
304

Philipp Arras's avatar
Philipp Arras committed
305 306 307 308
    @property
    def fluctuation_amplitude(self):
        return self._fluc

309 310 311
    def __repr__(self):
        return self._repr_str

312 313

class CorrelatedFieldMaker:
314
    """Construction helper for hierarchical correlated field models.
Lukas Platz's avatar
Lukas Platz committed
315 316

    The correlated field models are parametrized by creating
317 318
    power spectrum operators ("amplitudes") via calls to
    :func:`add_fluctuations` that act on the targeted field subdomains.
Lukas Platz's avatar
Lukas Platz committed
319
    During creation of the :class:`CorrelatedFieldMaker` via
320 321 322
    :func:`make`, a global offset from zero of the field model
    can be defined and an operator applying fluctuations
    around this offset is parametrized.
Lukas Platz's avatar
Lukas Platz committed
323 324

    The resulting correlated field model operator has a
Martin Reinecke's avatar
Martin Reinecke committed
325
    :class:`~nifty7.multi_domain.MultiDomain` as its domain and
Lukas Platz's avatar
Lukas Platz committed
326 327 328
    expects its input values to be univariately gaussian.

    The target of the constructed operator will be a
Martin Reinecke's avatar
merge  
Martin Reinecke committed
329
    :class:`~nifty7.domain_tuple.DomainTuple` containing the
330 331
    `target_subdomains` of the added fluctuations in the order of
    the `add_fluctuations` calls.
Lukas Platz's avatar
Lukas Platz committed
332

333
    Creation of the model operator is completed by calling the method
Lukas Platz's avatar
Lukas Platz committed
334 335
    :func:`finalize`, which returns the configured operator.

336 337 338 339 340 341 342 343 344 345
    An operator representing an array of correlated field models
    can be constructed by setting the `total_N` parameter of
    :func:`make`. It will have an
    :class:`~nifty.domains.unstructucture_domain.UnstructureDomain`
    of shape `(total_N,)` prepended to its target domain and represent
    `total_N` correlated fields simulataneously.
    The degree of information sharing between the correlated field
    models can be configured via the `dofdex` parameters
    of :func:`make` and :func:`add_fluctuations`.

Lukas Platz's avatar
Lukas Platz committed
346
    See the methods :func:`make`, :func:`add_fluctuations`
347
    and :func:`finalize` for further usage information."""
348 349 350
    def __init__(self, offset_mean, offset_fluctuations_op, prefix, total_N):
        if not isinstance(offset_fluctuations_op, Operator):
            raise TypeError("offset_fluctuations_op needs to be an operator")
351
        self._a = []
352
        self._target_subdomains = []
Philipp Arras's avatar
Formats  
Philipp Arras committed
353

354 355
        self._offset_mean = offset_mean
        self._azm = offset_fluctuations_op
356
        self._prefix = prefix
Philipp Haim's avatar
Philipp Haim committed
357
        self._total_N = total_N
Philipp Arras's avatar
Formats  
Philipp Arras committed
358

359
    @staticmethod
360
    def make(offset_mean, offset_std, prefix, total_N=0, dofdex=None):
Lukas Platz's avatar
Lukas Platz committed
361 362 363 364 365 366
        """Returns a CorrelatedFieldMaker object.

        Parameters
        ----------
        offset_mean : float
            Mean offset from zero of the correlated field to be made.
367 368 369
        offset_std : tuple of float
            Mean standard deviation and standard deviation of the standard
            deviation of the offset. No, this is not a word duplication.
Lukas Platz's avatar
Lukas Platz committed
370 371
        prefix : string
            Prefix to the names of the domains of the cf operator to be made.
Lukas Platz's avatar
Lukas Platz committed
372
            This determines the names of the operator domain.
373 374
        total_N : integer, optional
            Number of field models to create.
Lukas Platz's avatar
Lukas Platz committed
375 376 377
            If not 0, the first entry of the operators target will be an
            :class:`~nifty.domains.unstructured_domain.UnstructuredDomain`
            with length `total_N`.
378
        dofdex : np.array of integers, optional
Philipp Arras's avatar
Philipp Arras committed
379 380 381
            An integer array specifying the zero mode models used if
            total_N > 1. It needs to have length of total_N. If total_N=3 and
            dofdex=[0,0,1], that means that two models for the zero mode are
382
            instantiated; the first one is used for the first and second
383 384 385
            field model and the second is used for the third field model.
            *If not specified*, use the same zero mode model for all
            constructed field models.
Lukas Platz's avatar
Lukas Platz committed
386
        """
Philipp Frank's avatar
Philipp Frank committed
387 388
        if dofdex is None:
            dofdex = np.full(total_N, 0)
389 390
        elif len(dofdex) != total_N:
            raise ValueError("length of dofdex needs to match total_N")
Philipp Frank's avatar
Philipp Frank committed
391
        N = max(dofdex) + 1 if total_N > 0 else 0
392 393 394
        if len(offset_std) != 2:
            raise TypeError
        zm = LognormalTransform(*offset_std, prefix + 'zeromode', N)
Philipp Frank's avatar
fixup  
Philipp Frank committed
395
        if total_N > 0:
Martin Reinecke's avatar
Martin Reinecke committed
396
            zm = _Distributor(dofdex, zm.target, UnstructuredDomain(total_N)) @ zm
397
        return CorrelatedFieldMaker(offset_mean, zm, prefix, total_N)
398 399

    def add_fluctuations(self,
400
                         target_subdomain,
401 402 403 404
                         fluctuations,
                         flexibility,
                         asperity,
                         loglogavgslope,
Martin Reinecke's avatar
Martin Reinecke committed
405 406 407 408
                         prefix='',
                         index=None,
                         dofdex=None,
                         harmonic_partner=None):
Lukas Platz's avatar
Lukas Platz committed
409 410 411 412 413 414
        """Function to add correlation structures to the field to be made.

        Correlations are described by their power spectrum and the subdomain
        on which they apply.

        The parameters `fluctuations`, `flexibility`, `asperity` and
415 416
        `loglogavgslope` configure the power spectrum model ("amplitude")
        used on the target field subdomain `target_subdomain`.
Lukas Platz's avatar
Lukas Platz committed
417 418
        It is assembled as the sum of a power law component
        (linear slope in log-log power-frequency-space),
Martin Reinecke's avatar
Martin Reinecke committed
419 420
        a smooth varying component (integrated Wiener process) and
        a ragged component (un-integrated Wiener process).
Lukas Platz's avatar
Lukas Platz committed
421 422 423 424 425 426 427

        Multiple calls to `add_fluctuations` are possible, in which case
        the constructed field will have the outer product of the individual
        power spectra as its global power spectrum.

        Parameters
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
428 429
        target_subdomain : :class:`~nifty7.domain.Domain`, \
                           :class:`~nifty7.domain_tuple.DomainTuple`
Lukas Platz's avatar
Lukas Platz committed
430 431
            Target subdomain on which the correlation structure defined
            in this call should hold.
432
        fluctuations : tuple of float
Lukas Platz's avatar
Lukas Platz committed
433
            Total spectral energy -> Amplitude of the fluctuations
434
        flexibility : tuple of float or None
435
            Amplitude of the non-power-law power spectrum component
436
        asperity : tuple of float or None
437
            Roughness of the non-power-law power spectrum component
438
            Used to accommodate single frequency peaks
439
        loglogavgslope : tuple of float
Lukas Platz's avatar
Lukas Platz committed
440 441 442
            Power law component exponent
        prefix : string
            prefix of the power spectrum parameter domain names
Philipp Arras's avatar
Philipp Arras committed
443 444 445
        index : int
            Position target_subdomain in the final total domain of the
            correlated field operator.
446 447
        dofdex : np.array, optional
            An integer array specifying the power spectrum models used if
Philipp Arras's avatar
Philipp Arras committed
448
            total_N > 1. It needs to have length of total_N. If total_N=3 and
449
            dofdex=[0,0,1], that means that two power spectrum models are
450
            instantiated; the first one is used for the first and second
451 452 453
            field model and the second one is used for the third field model.
            *If not given*, use the same power spectrum model for all
            constructed field models.
Martin Reinecke's avatar
Martin Reinecke committed
454 455
        harmonic_partner : :class:`~nifty7.domain.Domain`, \
                           :class:`~nifty7.domain_tuple.DomainTuple`
Lukas Platz's avatar
Lukas Platz committed
456 457
            In which harmonic space to define the power spectrum
        """
Philipp Frank's avatar
Philipp Frank committed
458
        if harmonic_partner is None:
459
            harmonic_partner = target_subdomain.get_default_codomain()
Philipp Frank's avatar
Fixup  
Philipp Frank committed
460
        else:
461 462
            target_subdomain.check_codomain(harmonic_partner)
            harmonic_partner.check_codomain(target_subdomain)
463

Philipp Haim's avatar
Philipp Haim committed
464 465
        if dofdex is None:
            dofdex = np.full(self._total_N, 0)
466 467
        elif len(dofdex) != self._total_N:
            raise ValueError("length of dofdex needs to match total_N")
Philipp Haim's avatar
Philipp Haim committed
468

Philipp Haim's avatar
Philipp Haim committed
469 470
        if self._total_N > 0:
            N = max(dofdex) + 1
471
            target_subdomain = makeDomain((UnstructuredDomain(N), target_subdomain))
Philipp Haim's avatar
Philipp Haim committed
472
        else:
Philipp Haim's avatar
Philipp Haim committed
473
            N = 0
474
            target_subdomain = makeDomain(target_subdomain)
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        # assert isinstance(target_subdomain[space], (RGSpace, HPSpace, GLSpace))

        for arg in [fluctuations, loglogavgslope]:
            if len(arg) != 2:
                raise TypeError
        for kw, arg in [("flexibility", flexibility), ("asperity", asperity)]:
            if arg is None:
                continue
            if len(arg) != 2:
                raise TypeError
            if len(arg) == 2 and (arg[0] <= 0. or arg[1] <= 0.):
                ve = "{0} must be strictly positive (or None)"
                raise ValueError(ve.format(kw))
        if flexibility is None and asperity is not None:
            raise ValueError("flexibility may not be disabled on its own")
Philipp Arras's avatar
Philipp Arras committed
490

491 492 493 494
        pre = self._prefix + str(prefix)
        fluct = LognormalTransform(*fluctuations, pre + 'fluctuations', N)
        if flexibility is not None:
            flex = LognormalTransform(*flexibility, pre + 'flexibility', N)
495
        else:
496
            flex = None
497 498
        if asperity is not None:
            asp = LognormalTransform(*asperity, pre + 'asperity', N)
499
        else:
500
            asp = None
501
        avgsl = NormalTransform(*loglogavgslope, pre + 'loglogavgslope', N)
502

Philipp Arras's avatar
Philipp Arras committed
503
        amp = _Amplitude(PowerSpace(harmonic_partner), fluct, flex, asp, avgsl,
504
                         self._azm, target_subdomain[-1].total_volume,
505
                         pre + 'spectrum', dofdex)
Philipp Haim's avatar
Philipp Haim committed
506

507 508
        if index is not None:
            self._a.insert(index, amp)
509
            self._target_subdomains.insert(index, target_subdomain)
510 511
        else:
            self._a.append(amp)
512
            self._target_subdomains.append(target_subdomain)
513

Philipp Arras's avatar
Philipp Arras committed
514 515 516 517 518 519 520 521 522 523
    def finalize(self, prior_info=100):
        """Finishes model construction process and returns the constructed
        operator.

        Parameters
        ----------
        prior_info : integer
            How many prior samples to draw for property verification statistics
            If zero, skips calculating and displaying statistics.
        """
Philipp Haim's avatar
Philipp Haim committed
524
        n_amplitudes = len(self._a)
Philipp Haim's avatar
Philipp Haim committed
525
        if self._total_N > 0:
Philipp Arras's avatar
Philipp Arras committed
526 527 528
            hspace = makeDomain(
                [UnstructuredDomain(self._total_N)] +
                [dd.target[-1].harmonic_partner for dd in self._a])
Philipp Haim's avatar
Philipp Haim committed
529 530
            spaces = tuple(range(1, n_amplitudes + 1))
            amp_space = 1
Philipp Haim's avatar
Philipp Haim committed
531 532
        else:
            hspace = makeDomain(
Philipp Arras's avatar
Philipp Arras committed
533
                [dd.target[0].harmonic_partner for dd in self._a])
Philipp Haim's avatar
Philipp Haim committed
534
            spaces = tuple(range(n_amplitudes))
Philipp Haim's avatar
Philipp Haim committed
535
            amp_space = 0
536

Martin Reinecke's avatar
Martin Reinecke committed
537
        expander = ContractionOperator(hspace, spaces=spaces).adjoint
Philipp Frank's avatar
fixup  
Philipp Frank committed
538
        azm = expander @ self._azm
539

540
        ht = HarmonicTransformOperator(hspace,
541
                                       self._target_subdomains[0][amp_space],
Martin Reinecke's avatar
Martin Reinecke committed
542
                                       space=spaces[0])
543
        for i in range(1, n_amplitudes):
544
            ht = HarmonicTransformOperator(ht.target,
545
                                           self._target_subdomains[i][amp_space],
546 547 548 549 550
                                           space=spaces[i]) @ ht
        a = []
        for ii in range(n_amplitudes):
            co = ContractionOperator(hspace, spaces[:ii] + spaces[ii + 1:])
            pp = self._a[ii].target[amp_space]
Philipp Haim's avatar
Philipp Haim committed
551
            pd = PowerDistributor(co.target, pp, amp_space)
552 553
            a.append(co.adjoint @ pd @ self._a[ii])
        corr = reduce(mul, a)
Philipp Arras's avatar
Philipp Arras committed
554
        op = ht(azm*corr*ducktape(hspace, None, self._prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
555

556 557
        if self._offset_mean is not None:
            offset = self._offset_mean
558 559 560 561 562 563 564
            # Deviations from this offset must not be considered here as they
            # are learned by the zeromode
            if isinstance(offset, (Field, MultiField)):
                op = Adder(offset) @ op
            else:
                offset = float(offset)
                op = Adder(full(op.target, offset)) @ op
565
        self.statistics_summary(prior_info)
566 567
        return op

568 569 570 571 572 573
    def statistics_summary(self, prior_info):
        from ..sugar import from_random

        if prior_info == 0:
            return

574 575
        lst = [('Offset amplitude', self.amplitude_total_offset),
               ('Total fluctuation amplitude', self.total_fluctuation)]
576
        namps = len(self._a)
577 578 579 580 581 582 583 584
        if namps > 1:
            for ii in range(namps):
                lst.append(('Slice fluctuation (space {})'.format(ii),
                            self.slice_fluctuation(ii)))
                lst.append(('Average fluctuation (space {})'.format(ii),
                            self.average_fluctuation(ii)))

        for kk, op in lst:
585 586
            sc = StatCalculator()
            for _ in range(prior_info):
587
                sc.add(op(from_random(op.domain, 'normal')))
Martin Reinecke's avatar
merge  
Martin Reinecke committed
588
            mean = sc.mean.val
Martin Reinecke's avatar
Martin Reinecke committed
589
            stddev = sc.var.ptw("sqrt").val
590
            for m, s in zip(mean.flatten(), stddev.flatten()):
591
                logger.info('{}: {:.02E} ± {:.02E}'.format(kk, m, s))
592 593 594

    def moment_slice_to_average(self, fluctuations_slice_mean, nsamples=1000):
        fluctuations_slice_mean = float(fluctuations_slice_mean)
595 596 597
        if not fluctuations_slice_mean > 0:
            msg = "fluctuations_slice_mean must be greater zero; got {!r}"
            raise ValueError(msg.format(fluctuations_slice_mean))
598
        from ..sugar import from_random
599 600
        scm = 1.
        for a in self._a:
Martin Reinecke's avatar
Martin Reinecke committed
601
            op = a.fluctuation_amplitude*self._azm.ptw("reciprocal")
602
            res = np.array([op(from_random(op.domain, 'normal')).val
603 604
                            for _ in range(nsamples)])
            scm *= res**2 + 1.
605
        return fluctuations_slice_mean/np.mean(np.sqrt(scm))
606

Philipp Arras's avatar
Philipp Arras committed
607
    @property
Philipp Haim's avatar
Philipp Haim committed
608
    def normalized_amplitudes(self):
609
        """Returns the power spectrum operators used in the model"""
610
        return self._a
Philipp Arras's avatar
Philipp Arras committed
611

Philipp Haim's avatar
Philipp Haim committed
612 613 614 615 616 617 618
    @property
    def amplitude(self):
        if len(self._a) > 1:
            s = ('If more than one spectrum is present in the model,',
                 ' no unique set of amplitudes exist because only the',
                 ' relative scale is determined.')
            raise NotImplementedError(s)
Philipp Haim's avatar
Fix  
Philipp Haim committed
619 620
        dom = self._a[0].target
        expand = ContractionOperator(dom, len(dom)-1).adjoint
Philipp Haim's avatar
Philipp Haim committed
621 622
        return self._a[0]*(expand @ self.amplitude_total_offset)

623 624 625
    @property
    def amplitude_total_offset(self):
        return self._azm
Philipp Arras's avatar
Philipp Arras committed
626 627

    @property
628
    def total_fluctuation(self):
629
        """Returns operator which acts on prior or posterior samples"""
630
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
631
            raise NotImplementedError
632
        if len(self._a) == 1:
633
            return self.average_fluctuation(0)
634 635
        q = 1.
        for a in self._a:
Martin Reinecke's avatar
Martin Reinecke committed
636
            fl = a.fluctuation_amplitude*self._azm.ptw("reciprocal")
Philipp Arras's avatar
Philipp Arras committed
637
            q = q*(Adder(full(fl.target, 1.)) @ fl**2)
Martin Reinecke's avatar
Martin Reinecke committed
638
        return (Adder(full(q.target, -1.)) @ q).ptw("sqrt")*self._azm
639

Philipp Arras's avatar
Philipp Arras committed
640
    def slice_fluctuation(self, space):
641
        """Returns operator which acts on prior or posterior samples"""
642
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
643
            raise NotImplementedError
644
        if space >= len(self._a):
645
            raise ValueError("invalid space specified; got {!r}".format(space))
646
        if len(self._a) == 1:
647
            return self.average_fluctuation(0)
648 649
        q = 1.
        for j in range(len(self._a)):
Martin Reinecke's avatar
Martin Reinecke committed
650
            fl = self._a[j].fluctuation_amplitude*self._azm.ptw("reciprocal")
651
            if j == space:
Philipp Arras's avatar
Philipp Arras committed
652
                q = q*fl**2
653
            else:
Philipp Arras's avatar
Philipp Arras committed
654
                q = q*(Adder(full(fl.target, 1.)) @ fl**2)
Martin Reinecke's avatar
Martin Reinecke committed
655
        return q.ptw("sqrt")*self._azm
Philipp Arras's avatar
Philipp Arras committed
656 657

    def average_fluctuation(self, space):
658
        """Returns operator which acts on prior or posterior samples"""
659
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
660
            raise NotImplementedError
661
        if space >= len(self._a):
662
            raise ValueError("invalid space specified; got {!r}".format(space))
663
        if len(self._a) == 1:
Philipp Haim's avatar
Philipp Haim committed
664 665
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude
666

667 668
    @staticmethod
    def offset_amplitude_realized(samples):
Philipp Haim's avatar
Philipp Haim committed
669
        spaces = _structured_spaces(samples[0].domain)
670 671
        res = 0.
        for s in samples:
Philipp Haim's avatar
Philipp Haim committed
672
            res = res + s.mean(spaces)**2
Philipp Haim's avatar
Philipp Haim committed
673 674
        res = res/len(samples)
        return np.sqrt(res if np.isscalar(res) else res.val)
Philipp Arras's avatar
Philipp Arras committed
675

676 677 678 679 680 681 682 683
    @staticmethod
    def total_fluctuation_realized(samples):
        return _total_fluctuation_realized(samples)

    @staticmethod
    def slice_fluctuation_realized(samples, space):
        """Computes slice fluctuations from collection of field (defined in signal
        space) realizations."""
Philipp Haim's avatar
Philipp Haim committed
684 685
        spaces = _structured_spaces(samples[0].domain)
        if space >= len(spaces):
686
            raise ValueError("invalid space specified; got {!r}".format(space))
Philipp Haim's avatar
Philipp Haim committed
687
        if len(spaces) == 1:
688
            return _total_fluctuation_realized(samples)
Philipp Haim's avatar
Philipp Haim committed
689
        space = space + spaces[0]
Philipp Arras's avatar
Philipp Arras committed
690
        res1, res2 = 0., 0.
691
        for s in samples:
Philipp Frank's avatar
fixes  
Philipp Frank committed
692 693 694 695
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
Philipp Haim's avatar
Philipp Haim committed
696
        res = res1.mean(spaces) - res2.mean(spaces[:-1])
Philipp Haim's avatar
Philipp Haim committed
697
        return np.sqrt(res if np.isscalar(res) else res.val)
Philipp Frank's avatar
fixes  
Philipp Frank committed
698

Philipp Arras's avatar
Philipp Arras committed
699
    @staticmethod
700 701 702
    def average_fluctuation_realized(samples, space):
        """Computes average fluctuations from collection of field (defined in signal
        space) realizations."""
Philipp Haim's avatar
Philipp Haim committed
703 704
        spaces = _structured_spaces(samples[0].domain)
        if space >= len(spaces):
705
            raise ValueError("invalid space specified; got {!r}".format(space))
Philipp Haim's avatar
Philipp Haim committed
706
        if len(spaces) == 1:
707
            return _total_fluctuation_realized(samples)
Philipp Haim's avatar
Philipp Haim committed
708 709 710
        space = space + spaces[0]
        sub_spaces = set(spaces)
        sub_spaces.remove(space)
Philipp Arras's avatar
Philipp Arras committed
711
        # Domain containing domain[space] and domain[0] iff total_N>0
Philipp Haim's avatar
Philipp Haim committed
712
        sub_dom = makeDomain([samples[0].domain[ind]
Philipp Arras's avatar
Philipp Arras committed
713
                              for ind in (set([0])-set(spaces)) | set([space])])
Philipp Haim's avatar
Philipp Haim committed
714
        co = ContractionOperator(sub_dom, len(sub_dom)-1)
715
        size = co.domain.size/co.target.size
Philipp Arras's avatar
Philipp Arras committed
716 717
        res = 0.
        for s in samples:
Philipp Haim's avatar
Philipp Haim committed
718
            r = s.mean(sub_spaces)
719
            res = res + (r - co.adjoint(co(r)/size))**2
Philipp Haim's avatar
Philipp Haim committed
720
        res = res.mean(spaces[0])/len(samples)
Philipp Haim's avatar
Philipp Haim committed
721
        return np.sqrt(res if np.isscalar(res) else res.val)