field.py 32.9 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
from __future__ import division
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
4
5
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
6

7
from d2o import distributed_data_object,\
8
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
9

10
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
11

12
from nifty.field_types import FieldType
13

14
from nifty.spaces.space import Space
15
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
16

csongor's avatar
csongor committed
17
import nifty.nifty_utilities as utilities
18
19
from nifty.random import Random

csongor's avatar
csongor committed
20

Jait Dixit's avatar
Jait Dixit committed
21
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
22
    # ---Initialization methods---
23

Theo Steininger's avatar
Theo Steininger committed
24
    def __init__(self, domain=None, val=None, dtype=None, field_type=None,
25
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
26

27
        self.domain = self._parse_domain(domain=domain, val=val)
28
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
29

30
        self.field_type = self._parse_field_type(field_type, val=val)
31

Theo Steininger's avatar
Theo Steininger committed
32
33
34
35
36
37
        try:
            start = len(reduce(lambda x, y: x+y, self.domain_axes))
        except TypeError:
            start = 0
        self.field_type_axes = self._get_axes_tuple(self.field_type,
                                                    start=start)
38

Theo Steininger's avatar
Theo Steininger committed
39
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
40
                                       val=val,
Theo Steininger's avatar
Theo Steininger committed
41
42
                                       domain=self.domain,
                                       field_type=self.field_type)
43

44
45
46
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
47
48
49

        self.set_val(new_val=val, copy=copy)

50
    def _parse_domain(self, domain, val=None):
51
        if domain is None:
52
53
54
55
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
56
        elif isinstance(domain, Space):
57
            domain = (domain,)
58
59
60
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
61
        for d in domain:
62
            if not isinstance(d, Space):
63
64
65
                raise TypeError(
                    "Given domain contains something that is not a "
                    "nifty.space.")
csongor's avatar
csongor committed
66
67
        return domain

68
    def _parse_field_type(self, field_type, val=None):
69
        if field_type is None:
70
71
72
73
            if isinstance(val, Field):
                field_type = val.field_type
            else:
                field_type = ()
74
        elif isinstance(field_type, FieldType):
75
            field_type = (field_type,)
76
77
        elif not isinstance(field_type, tuple):
            field_type = tuple(field_type)
78
        for ft in field_type:
79
            if not isinstance(ft, FieldType):
80
81
                raise TypeError(
                    "Given object is not a nifty.FieldType.")
82
83
        return field_type

Theo Steininger's avatar
Theo Steininger committed
84
85
86
87
88
89
90
91
92
93
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
94

95
    def _infer_dtype(self, dtype, val, domain, field_type):
csongor's avatar
csongor committed
96
        if dtype is None:
97
98
99
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
Theo Steininger's avatar
Theo Steininger committed
100
101
102
103
104
105
106
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
csongor's avatar
csongor committed
107

Theo Steininger's avatar
Theo Steininger committed
108
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
109

Theo Steininger's avatar
Theo Steininger committed
110
        return dtype
111

112
113
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
114
            if isinstance(val, distributed_data_object):
115
                distribution_strategy = val.distribution_strategy
116
            elif isinstance(val, Field):
117
                distribution_strategy = val.distribution_strategy
118
            else:
119
                self.logger.info("Datamodel set to default!")
120
                distribution_strategy = gc['default_distribution_strategy']
121
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
122
123
124
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
125
        return distribution_strategy
126
127

    # ---Factory methods---
128

129
130
    @classmethod
    def from_random(cls, random_type, domain=None, dtype=None, field_type=None,
131
                    distribution_strategy=None, **kwargs):
132
133
        # create a initially empty field
        f = cls(domain=domain, dtype=dtype, field_type=field_type,
134
                distribution_strategy=distribution_strategy)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
170
        else:
171
172
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
173

174
        return random_arguments
csongor's avatar
csongor committed
175

176
177
178
179
180
181
182
183
184
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
185
                    "Field has a space in `domain` which is neither "
186
187
188
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
189
190
191
192
193
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
194
195
196
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
197
198

        if len(spaces) == 0:
199
200
            raise ValueError(
                "No space for analysis specified.")
201
        elif len(spaces) > 1:
202
203
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
204
205
206
207

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
208
209
            raise ValueError(
                "The analyzed space must be harmonic.")
210

211
212
213
214
215
216
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

217
218
219
220
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

221
222
223
224
225
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

226
227
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
228
                                  distribution_strategy=distribution_strategy,
229
230
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
231

232
        # extract pindex and rho from power_domain
233
234
        pindex = power_domain.pindex
        rho = power_domain.rho
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
253
254
255
256
257
258
259
260
261
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

262
263
264
        result_field = self.copy_empty(
                   domain=result_domain,
                   distribution_strategy=power_spectrum.distribution_strategy)
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
293
            raise ValueError("pindex's distribution strategy must be "
294
295
296
297
298
299
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
300
                    "A slicing distributor shall not be reshaped to "
301
302
303
304
305
306
307
308
309
310
311
312
313
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

314
315
    def power_synthesize(self, spaces=None, real_signal=True,
                         mean=None, std=None):
316
        # assert that all spaces in `self.domain` are either of signal-type or
317
318
        # power_space instances
        for sp in self.domain:
319
            if not sp.harmonic and not isinstance(sp, PowerSpace):
320
                raise AttributeError(
321
                    "Field has a space in `domain` which is neither "
322
323
                    "harmonic nor a PowerSpace.")

324
325
326
327
328
329
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
330
331
332
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
333
334

        if len(spaces) == 0:
335
336
            raise ValueError(
                "No space for synthesis specified.")
337
        elif len(spaces) > 1:
338
339
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
340
341
342
343

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
344
345
            raise ValueError(
                "A PowerSpace is needed for field synthetization.")
346
347
348
349
350
351
352
353
354
355
356
357
358
359

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

360
361
        result_list = [self.__class__.from_random(
                             'normal',
362
363
364
                             mean=mean,
                             std=std,
                             domain=result_domain,
365
366
367
                             dtype=harmonic_domain.dtype,
                             field_type=self.field_type,
                             distribution_strategy=self.distribution_strategy)
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
                                    axes=x.domain_axes[power_space_index])[0]
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
392
            self.logger.warn(
393
                "The distribution_stragey of pindex does not fit the "
394
395
396
397
398
399
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
400
        full_spec = self.val.get_full_data()
401
402
403
404
405

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
406
        local_rescaler = full_spec[local_blow_up]
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
428

Theo Steininger's avatar
Theo Steininger committed
429
    # ---Properties---
430

Theo Steininger's avatar
Theo Steininger committed
431
    def set_val(self, new_val=None, copy=False):
432
433
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
434
435
            new_val = new_val.copy()
        self._val = new_val
436
        return self
csongor's avatar
csongor committed
437

438
439
    def get_val(self, copy=False):
        if copy:
Theo Steininger's avatar
Theo Steininger committed
440
            return self._val.copy()
441
        else:
Theo Steininger's avatar
Theo Steininger committed
442
            return self._val
csongor's avatar
csongor committed
443

Theo Steininger's avatar
Theo Steininger committed
444
445
446
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
447

Theo Steininger's avatar
Theo Steininger committed
448
449
450
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
451

452
453
    @property
    def shape(self):
454
455
456
457
458
459
460
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
461

462
        return global_shape
csongor's avatar
csongor committed
463

464
465
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
466
467
468
469
470
471
472
        dim_tuple = ()
        dim_tuple += tuple(sp.dim for sp in self.domain)
        dim_tuple += tuple(ft.dim for ft in self.field_type)
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
473

474
475
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
476
477
478
479
480
481
482
483
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
484
        try:
Theo Steininger's avatar
Theo Steininger committed
485
            return reduce(lambda x, y: x * y, volume_tuple)
486
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
487
            return 0
488

Theo Steininger's avatar
Theo Steininger committed
489
    # ---Special unary/binary operations---
490

csongor's avatar
csongor committed
491
492
493
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
494
495
        else:
            dtype = np.dtype(dtype)
496

497
498
        casted_x = x

499
        for ind, sp in enumerate(self.domain):
500
            casted_x = sp.pre_cast(casted_x,
501
502
503
504
505
506
507
                                   axes=self.domain_axes[ind])

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.pre_cast(casted_x,
                                   axes=self.field_type_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
508
509

        for ind, sp in enumerate(self.domain):
510
511
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
512
513

        for ind, ft in enumerate(self.field_type):
514
515
            casted_x = ft.post_cast(casted_x,
                                    axes=self.field_type_axes[ind])
516
517

        return casted_x
csongor's avatar
csongor committed
518

Theo Steininger's avatar
Theo Steininger committed
519
    def _actual_cast(self, x, dtype=None):
520
        if isinstance(x, Field):
csongor's avatar
csongor committed
521
522
523
524
525
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

526
        return_x = distributed_data_object(
527
528
529
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
530
531
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
532
533

    def copy(self, domain=None, dtype=None, field_type=None,
534
             distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
535
        copied_val = self.get_val(copy=True)
536
537
538
539
540
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                field_type=field_type,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
541
542
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
543

Theo Steininger's avatar
Theo Steininger committed
544
    def copy_empty(self, domain=None, dtype=None, field_type=None,
545
                   distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
546
547
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
548
        else:
Theo Steininger's avatar
Theo Steininger committed
549
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
550

Theo Steininger's avatar
Theo Steininger committed
551
552
553
554
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
555

Theo Steininger's avatar
Theo Steininger committed
556
557
558
559
        if field_type is None:
            field_type = self.field_type
        else:
            field_type = self._parse_field_type(field_type)
csongor's avatar
csongor committed
560

561
562
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
563

Theo Steininger's avatar
Theo Steininger committed
564
565
566
567
568
569
570
571
572
573
574
575
576
577
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
            for i in xrange(len(self.field_type)):
                if self.field_type[i] is not field_type[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
578
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
579
580
581
582
583
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
                              field_type=field_type,
584
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
585
        return new_field
csongor's avatar
csongor committed
586

Theo Steininger's avatar
Theo Steininger committed
587
588
589
590
591
592
593
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
594
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
595
596
597
598
599
600
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
601
        if inplace:
csongor's avatar
csongor committed
602
603
604
605
            new_field = self
        else:
            new_field = self.copy_empty()

606
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
607

csongor's avatar
csongor committed
608
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
609
610
611
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
612

613
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
614
615
616
617
618
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
619
620

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
621
622
        return new_field

Theo Steininger's avatar
Theo Steininger committed
623
624
625
626
627
628
629
630
631
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
                for index in xrange(len(self.field_type)):
                    assert x.field_type[index] == self.field_type[index]
            except AssertionError:
632
633
                raise ValueError(
                    "domains are incompatible.")
Theo Steininger's avatar
Theo Steininger committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

652
    def norm(self, q=2):
csongor's avatar
csongor committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
667
        if q == 2:
668
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
669
        else:
670
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

687
        new_val = self.get_val(copy=False)
Theo Steininger's avatar
Theo Steininger committed
688
        new_val = new_val.conjugate()
689
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
690
691
692

        return work_field

Theo Steininger's avatar
Theo Steininger committed
693
    # ---General unary/contraction methods---
694

Theo Steininger's avatar
Theo Steininger committed
695
696
    def __pos__(self):
        return self.copy()
697

Theo Steininger's avatar
Theo Steininger committed
698
699
700
701
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
702
703
        return return_field

Theo Steininger's avatar
Theo Steininger committed
704
705
706
707
708
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
709

Theo Steininger's avatar
Theo Steininger committed
710
711
712
713
714
715
    def _contraction_helper(self, op, spaces, types):
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
716

Theo Steininger's avatar
Theo Steininger committed
717
718
719
720
        if types is None:
            types = xrange(len(self.field_type))
        else:
            types = utilities.cast_axis_to_tuple(types, len(self.field_type))
721

Theo Steininger's avatar
Theo Steininger committed
722
723
724
725
        axes_list = ()
        axes_list += tuple(self.domain_axes[sp_index] for sp_index in spaces)
        axes_list += tuple(self.field_type_axes[ft_index] for
                           ft_index in types)
726
        try:
Theo Steininger's avatar
Theo Steininger committed
727
            axes_list = reduce(lambda x, y: x+y, axes_list)
728
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
729
            axes_list = ()
csongor's avatar
csongor committed
730

Theo Steininger's avatar
Theo Steininger committed
731
732
733
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
734

Theo Steininger's avatar
Theo Steininger committed
735
736
737
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
738
        else:
Theo Steininger's avatar
Theo Steininger committed
739
740
741
742
743
744
745
746
747
748
749
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
            return_field_type = tuple(self.field_type[i]
                                      for i in xrange(len(self.field_type))
                                      if i not in types)
            return_field = Field(domain=return_domain,
                                 val=data,
                                 field_type=return_field_type,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
750

Theo Steininger's avatar
Theo Steininger committed
751
752
    def sum(self, spaces=None, types=None):
        return self._contraction_helper('sum', spaces, types)
csongor's avatar
csongor committed
753

Theo Steininger's avatar
Theo Steininger committed
754
755
    def prod(self, spaces=None, types=None):
        return self._contraction_helper('prod', spaces, types)
csongor's avatar
csongor committed
756

Theo Steininger's avatar
Theo Steininger committed
757
758
    def all(self, spaces=None, types=None):
        return self._contraction_helper('all', spaces, types)
csongor's avatar
csongor committed
759

Theo Steininger's avatar
Theo Steininger committed
760
761
    def any(self, spaces=None, types=None):
        return self._contraction_helper('any', spaces, types)
csongor's avatar
csongor committed
762

Theo Steininger's avatar
Theo Steininger committed
763
764
    def min(self, spaces=None, types=None):
        return self._contraction_helper('min', spaces, types)
csongor's avatar
csongor committed
765

Theo Steininger's avatar
Theo Steininger committed
766
767
    def nanmin(self, spaces=None, types=None):
        return self._contraction_helper('nanmin', spaces, types)
csongor's avatar
csongor committed
768

Theo Steininger's avatar
Theo Steininger committed
769
770
    def max(self, spaces=None, types=None):
        return self._contraction_helper('max', spaces, types)
csongor's avatar
csongor committed
771

Theo Steininger's avatar
Theo Steininger committed
772
773
    def nanmax(self, spaces=None, types=None):
        return self._contraction_helper('nanmax', spaces, types)
csongor's avatar
csongor committed
774

Theo Steininger's avatar
Theo Steininger committed
775
776
    def mean(self, spaces=None, types=None):
        return self._contraction_helper('mean', spaces, types)
csongor's avatar
csongor committed
777

Theo Steininger's avatar
Theo Steininger committed
778
779
    def var(self, spaces=None, types=None):
        return self._contraction_helper('var', spaces, types)
csongor's avatar
csongor committed
780

Theo Steininger's avatar
Theo Steininger committed
781
782
    def std(self, spaces=None, types=None):
        return self._contraction_helper('std', spaces, types)
csongor's avatar
csongor committed
783

Theo Steininger's avatar
Theo Steininger committed
784
    # ---General binary methods---
csongor's avatar
csongor committed
785

Theo Steininger's avatar
Theo Steininger committed
786
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
787
        # if other is a field, make sure that the domains match
788
        if isinstance(other, Field):
Theo Steininger's avatar
Theo Steininger committed
789
790
791
792
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
793
                assert len(other.field_type) == len(self.field_type)
Theo Steininger's avatar
Theo Steininger committed
794
795
796
                for index in xrange(len(self.field_type)):
                    assert other.field_type[index] == self.field_type[index]
            except AssertionError:
797
798
                raise ValueError(
                    "domains are incompatible.")
Theo Steininger's avatar
Theo Steininger committed
799
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
800

Theo Steininger's avatar
Theo Steininger committed
801
802
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
803
804
805
806

        if inplace:
            working_field = self
        else:
807
            working_field = self.copy_empty(dtype=return_val.dtype)
csongor's avatar
csongor committed
808

Theo Steininger's avatar
Theo Steininger committed
809
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
810
811
812
        return working_field

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
813
        return self._binary_helper(other, op='__add__')
814

815
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
816
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
817
818

    def __iadd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
819
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
820
821

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
822
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
823
824

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
825
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
826
827

    def __isub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
828
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
829
830

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
831
        return self._binary_helper(other, op='__mul__')
832

833
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
834
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
835
836

    def __imul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
837
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
838
839

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
840
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
841
842

    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
843
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
844
845

    def __idiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
846
        return self._binary_helper(other, op='__idiv__', inplace=True)
847

csongor's avatar
csongor committed
848
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
849
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
850
851

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
852
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
853
854

    def __ipow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
855
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
856
857

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
858
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
859
860

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
861
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
862
863
864
865
866

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
867
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
868
869
870
871
872

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
873
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
874
875

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
876
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
877
878

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
879
880
881
882
883
884
885
886
887
888
889
890
891
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
892

Jait Dixit's avatar
Jait Dixit committed
893
894
895
    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Theo Steininger's avatar
Theo Steininger committed
896
897
898
899
        hdf5_group.attrs['dtype'] = self.dtype.name
        hdf5_group.attrs['distribution_strategy'] = self.distribution_strategy
        hdf5_group.attrs['field_type_axes'] = str(self.field_type_axes)
        hdf5_group.attrs['domain_axes'] = str(self.domain_axes)
900
901
        hdf5_group['num_domain'] = len(self.domain)
        hdf5_group['num_ft'] = len(self.field_type)
Jait Dixit's avatar
Jait Dixit committed
902

Theo Steininger's avatar
Theo Steininger committed
903
        ret_dict = {'val': self.val}
Jait Dixit's avatar
Jait Dixit committed
904
905
906
907
908
909
910
911
912
913

        for i in range(len(self.domain)):
            ret_dict['s_' + str(i)] = self.domain[i]

        for i in range(len(self.field_type)):
            ret_dict['ft_' + str(i)] = self.field_type[i]

        return ret_dict

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
914
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
915
916
917
918
919
920
        # create empty field
        new_field = EmptyField()
        # reset class
        new_field.__class__ = cls
        # set values
        temp_domain = []
921
        for i in range(hdf5_group['num_domain'][()]):
Theo Steininger's avatar
Theo Steininger committed
922
            temp_domain.append(repository.get('s_' + str(i), hdf5_group))
Jait Dixit's avatar
Jait Dixit committed
923
924
925
        new_field.domain = tuple(temp_domain)

        temp_ft = []
926
        for i in range(hdf5_group['num_ft'][()]):
Theo Steininger's avatar
Theo Steininger committed
927
            temp_domain.append(repository.get('ft_' + str(i), hdf5_group))
Jait Dixit's avatar
Jait Dixit committed
928
929
        new_field.field_type = tuple(temp_ft)

Theo Steininger's avatar
Theo Steininger committed
930
931
932
933
934
935
936
        exec('new_field.domain_axes = ' + hdf5_group.attrs['domain_axes'])
        exec('new_field.field_type_axes = ' +
             hdf5_group.attrs['field_type_axes'])
        new_field._val = repository.get('val', hdf5_group)
        new_field.dtype = np.dtype(hdf5_group.attrs['dtype'])
        new_field.distribution_strategy =\
            hdf5_group.attrs['distribution_strategy']
Jait Dixit's avatar
Jait Dixit committed
937
938

        return new_field
939

Theo Steininger's avatar
Theo Steininger committed
940

941
class EmptyField(Field):
csongor's avatar
csongor committed
942
943
    def __init__(self):
        pass