nifty_core.py 107 KB
Newer Older
1
2
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
Marco Selig's avatar
Marco Selig committed
3
##
4
# Copyright (C) 2013 Max-Planck-Society
Marco Selig's avatar
Marco Selig committed
5
##
6
7
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
Marco Selig's avatar
Marco Selig committed
8
##
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
Marco Selig's avatar
Marco Selig committed
13
##
14
15
16
17
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
Marco Selig's avatar
Marco Selig committed
18
##
19
20
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  core
    ..                               /______/

    .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/

    NIFTY [#]_, "Numerical Information Field Theory", is a versatile
    library designed to enable the development of signal inference algorithms
    that operate regardless of the underlying spatial grid and its resolution.
    Its object-oriented framework is written in Python, although it accesses
    libraries written in Cython, C++, and C for efficiency.

    NIFTY offers a toolkit that abstracts discretized representations of
    continuous spaces, fields in these spaces, and operators acting on fields
    into classes. Thereby, the correct normalization of operations on fields is
    taken care of automatically without concerning the user. This allows for an
    abstract formulation and programming of inference algorithms, including
    those derived within information field theory. Thus, NIFTY permits its user
Marco Selig's avatar
Marco Selig committed
45
    to rapidly prototype algorithms in 1D and then apply the developed code in
Marco Selig's avatar
Marco Selig committed
46
47
48
49
50
    higher-dimensional settings of real world problems. The set of spaces on
    which NIFTY operates comprises point sets, n-dimensional regular grids,
    spherical spaces, their harmonic counterparts, and product spaces
    constructed as combinations of those.

51
52
53
54
55
56
57
    References
    ----------
    .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory --
        a versatile Python library for signal inference",
        `A&A, vol. 554, id. A26 <http://dx.doi.org/10.1051/0004-6361/201321236>`_,
        2013; `arXiv:1301.4499 <http://www.arxiv.org/abs/1301.4499>`_

Marco Selig's avatar
Marco Selig committed
58
59
60
61
62
63
    Class & Feature Overview
    ------------------------
    The NIFTY library features three main classes: **spaces** that represent
    certain grids, **fields** that are defined on spaces, and **operators**
    that apply to fields.

64
65
    .. Overview of all (core) classes:
    ..
Marco Selig's avatar
Marco Selig committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    .. - switch
    .. - notification
    .. - _about
    .. - random
    .. - space
    ..     - point_space
    ..     - rg_space
    ..     - lm_space
    ..     - gl_space
    ..     - hp_space
    ..     - nested_space
    .. - field
    .. - operator
    ..     - diagonal_operator
    ..         - power_operator
    ..     - projection_operator
    ..     - vecvec_operator
    ..     - response_operator
    .. - probing
    ..     - trace_probing
    ..     - diagonal_probing

88
89
    Overview of the main classes and functions:

Marco Selig's avatar
Marco Selig committed
90
91
    .. automodule:: nifty

92
93
94
95
96
97
98
99
100
101
102
103
104
105
    - :py:class:`space`
        - :py:class:`point_space`
        - :py:class:`rg_space`
        - :py:class:`lm_space`
        - :py:class:`gl_space`
        - :py:class:`hp_space`
        - :py:class:`nested_space`
    - :py:class:`field`
    - :py:class:`operator`
        - :py:class:`diagonal_operator`
            - :py:class:`power_operator`
        - :py:class:`projection_operator`
        - :py:class:`vecvec_operator`
        - :py:class:`response_operator`
Marco Selig's avatar
Marco Selig committed
106

107
        .. currentmodule:: nifty.nifty_tools
Marco Selig's avatar
Marco Selig committed
108

109
110
        - :py:class:`invertible_operator`
        - :py:class:`propagator_operator`
Marco Selig's avatar
Marco Selig committed
111

112
        .. currentmodule:: nifty.nifty_explicit
Marco Selig's avatar
Marco Selig committed
113

114
        - :py:class:`explicit_operator`
Marco Selig's avatar
Marco Selig committed
115

116
    .. automodule:: nifty
Marco Selig's avatar
Marco Selig committed
117

118
119
120
    - :py:class:`probing`
        - :py:class:`trace_probing`
        - :py:class:`diagonal_probing`
Marco Selig's avatar
Marco Selig committed
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        .. currentmodule:: nifty.nifty_explicit

        - :py:class:`explicit_probing`

    .. currentmodule:: nifty.nifty_tools

    - :py:class:`conjugate_gradient`
    - :py:class:`steepest_descent`

    .. currentmodule:: nifty.nifty_explicit

    - :py:func:`explicify`

    .. currentmodule:: nifty.nifty_power

    - :py:func:`weight_power`,
      :py:func:`smooth_power`,
      :py:func:`infer_power`,
      :py:func:`interpolate_power`
Marco Selig's avatar
Marco Selig committed
141
142
143
144

"""
from __future__ import division
import numpy as np
Marco Selig's avatar
Marco Selig committed
145
import pylab as pl
146

147
from nifty_paradict import space_paradict,\
148
    point_space_paradict
Ultimanet's avatar
Ultimanet committed
149

150
from keepers import about,\
151
152
153
    global_configuration as gc,\
    global_dependency_injector as gdi

Ultimanet's avatar
Ultimanet committed
154
from nifty_random import random
155
from nifty.nifty_mpi_data import distributed_data_object,\
156
    STRATEGIES as DISTRIBUTION_STRATEGIES
157

158
import nifty.nifty_utilities as utilities
Marco Selig's avatar
Marco Selig committed
159

160
POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
Marco Selig's avatar
Marco Selig committed
161

Ultimanet's avatar
Ultimanet committed
162
163

class space(object):
Marco Selig's avatar
Marco Selig committed
164
    """
Ultimanet's avatar
Ultimanet committed
165
166
167
168
169
170
171
        ..     _______   ______    ____ __   _______   _______
        ..   /  _____/ /   _   | /   _   / /   ____/ /   __  /
        ..  /_____  / /  /_/  / /  /_/  / /  /____  /  /____/
        .. /_______/ /   ____/  \______|  \______/  \______/  class
        ..          /__/

        NIFTY base class for spaces and their discretizations.
Marco Selig's avatar
Marco Selig committed
172

Ultimanet's avatar
Ultimanet committed
173
174
175
        The base NIFTY space class is an abstract class from which other
        specific space subclasses, including those preimplemented in NIFTY
        (e.g. the regular grid class) must be derived.
Marco Selig's avatar
Marco Selig committed
176
177
178

        Parameters
        ----------
179
        dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
180
181
            Data type of the field values for a field defined on this space
            (default: numpy.float64).
182
        datamodel :
Marco Selig's avatar
Marco Selig committed
183
184
185

        See Also
        --------
Ultimanet's avatar
Ultimanet committed
186
187
188
189
190
191
192
193
        point_space :  A class for unstructured lists of numbers.
        rg_space : A class for regular cartesian grids in arbitrary dimensions.
        hp_space : A class for the HEALPix discretization of the sphere
            [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the sphere
            [#]_.
        lm_space : A class for spherical harmonic components.
        nested_space : A class for product spaces.
Marco Selig's avatar
Marco Selig committed
194

Ultimanet's avatar
Ultimanet committed
195
196
197
198
199
200
201
202
        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
Marco Selig's avatar
Marco Selig committed
203
204
205

        Attributes
        ----------
Ultimanet's avatar
Ultimanet committed
206
        para : {single object, list of objects}
207
208
209
            This is a freeform list of parameters that derivatives of the space
            class can use.
        dtype : numpy.dtype
Ultimanet's avatar
Ultimanet committed
210
211
212
213
214
215
216
            Data type of the field values for a field defined on this space.
        discrete : bool
            Whether the space is inherently discrete (true) or a discretization
            of a continuous space (false).
        vol : numpy.ndarray
            An array of pixel volumes, only one component if the pixels all
            have the same volume.
Marco Selig's avatar
Marco Selig committed
217
    """
218

Ultima's avatar
Ultima committed
219
    def __init__(self):
Marco Selig's avatar
Marco Selig committed
220
        """
Ultimanet's avatar
Ultimanet committed
221
            Sets the attributes for a space class instance.
Marco Selig's avatar
Marco Selig committed
222
223
224

            Parameters
            ----------
225
            dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
226
227
                Data type of the field values for a field defined on this space
                (default: numpy.float64).
228
            datamodel :
Marco Selig's avatar
Marco Selig committed
229

Ultimanet's avatar
Ultimanet committed
230
231
232
            Returns
            -------
            None
Marco Selig's avatar
Marco Selig committed
233
        """
234
        self.paradict = space_paradict()
235

Ultimanet's avatar
Ultimanet committed
236
237
238
    @property
    def para(self):
        return self.paradict['default']
239

Ultimanet's avatar
Ultimanet committed
240
241
242
    @para.setter
    def para(self, x):
        self.paradict['default'] = x
Marco Selig's avatar
Marco Selig committed
243

244
    def _identifier(self):
Marco Selig's avatar
Marco Selig committed
245
        """
246
247
248
        _identiftier returns an object which contains all information needed
        to uniquely idetnify a space. It returns a (immutable) tuple which
        therefore can be compared.
249
        """
250
251
252
253
254
255
256
257
258
259
260
261
262
        return tuple(sorted(vars(self).items()))

    def __eq__(self, x):
        if isinstance(x, type(self)):
            return self._identifier() == x._identifier()
        else:
            return False

    def __ne__(self, x):
        return not self.__eq__(x)

    def __len__(self):
        return int(self.get_dim(split=False))
Marco Selig's avatar
Marco Selig committed
263

264
    def copy(self):
265
        return space(para=self.para,
266
                     dtype=self.dtype)
Marco Selig's avatar
Marco Selig committed
267

Ultimanet's avatar
Ultimanet committed
268
    def getitem(self, data, key):
269
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
270
            "ERROR: no generic instance method 'getitem'."))
Marco Selig's avatar
Marco Selig committed
271

Ultimanet's avatar
Ultimanet committed
272
    def setitem(self, data, key):
273
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
274
            "ERROR: no generic instance method 'getitem'."))
275

Ultimanet's avatar
Ultimanet committed
276
    def apply_scalar_function(self, x, function, inplace=False):
277
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
278
            "ERROR: no generic instance method 'apply_scalar_function'."))
Marco Selig's avatar
Marco Selig committed
279

Ultimanet's avatar
Ultimanet committed
280
    def unary_operation(self, x, op=None):
281
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
282
            "ERROR: no generic instance method 'unary_operation'."))
283

Ultimanet's avatar
Ultimanet committed
284
    def binary_operation(self, x, y, op=None):
285
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
286
            "ERROR: no generic instance method 'binary_operation'."))
Marco Selig's avatar
Marco Selig committed
287

288
    def get_shape(self):
289
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
290
            "ERROR: no generic instance method 'shape'."))
Marco Selig's avatar
Marco Selig committed
291

292
    def get_dim(self, split=False):
Marco Selig's avatar
Marco Selig committed
293
        """
Ultimanet's avatar
Ultimanet committed
294
            Computes the dimension of the space, i.e.\  the number of pixels.
Marco Selig's avatar
Marco Selig committed
295
296
297

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
298
299
300
            split : bool, *optional*
                Whether to return the dimension split up, i.e. the numbers of
                pixels in each direction, or not (default: False).
Marco Selig's avatar
Marco Selig committed
301

Ultimanet's avatar
Ultimanet committed
302
303
304
305
            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
Marco Selig's avatar
Marco Selig committed
306
        """
307
        raise NotImplementedError(about._errors.cstring(
308
            "ERROR: no generic instance method 'dim'."))
Marco Selig's avatar
Marco Selig committed
309

310
    def get_dof(self):
Marco Selig's avatar
Marco Selig committed
311
        """
Ultimanet's avatar
Ultimanet committed
312
            Computes the number of degrees of freedom of the space.
Marco Selig's avatar
Marco Selig committed
313
314
315

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
316
317
            dof : int
                Number of degrees of freedom of the space.
Marco Selig's avatar
Marco Selig committed
318
        """
319
        raise NotImplementedError(about._errors.cstring(
320
            "ERROR: no generic instance method 'dof'."))
Marco Selig's avatar
Marco Selig committed
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    def cast(self, x, verbose=False):
        """
            Computes valid field values from a given object, trying
            to translate the given data into a valid form. Thereby it is as
            benevolent as possible.

            Parameters
            ----------
            x : {float, numpy.ndarray, nifty.field}
                Object to be transformed into an array of valid field values.

            Returns
            -------
            x : numpy.ndarray, distributed_data_object
                Array containing the field values, which are compatible to the
                space.

            Other parameters
            ----------------
            verbose : bool, *optional*
                Whether the method should raise a warning if information is
                lost during casting (default: False).
        """
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'cast'."))
Marco Selig's avatar
Marco Selig committed
347

348
    # TODO: Move enforce power into power_indices class
349
    def enforce_power(self, spec, **kwargs):
Marco Selig's avatar
Marco Selig committed
350
        """
Ultimanet's avatar
Ultimanet committed
351
            Provides a valid power spectrum array from a given object.
Marco Selig's avatar
Marco Selig committed
352
353
354

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
355
356
357
358
            spec : {scalar, list, numpy.ndarray, nifty.field, function}
                Fiducial power spectrum from which a valid power spectrum is to
                be calculated. Scalars are interpreted as constant power
                spectra.
Marco Selig's avatar
Marco Selig committed
359
360
361

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
362
363
364
365
366
367
368
369
370
371
372
373
            spec : numpy.ndarray
                Valid power spectrum.

            Other parameters
            ----------------
            size : int, *optional*
                Number of bands the power spectrum shall have (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band.
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
374
375
                Flag specifying if the spectral binning is performed on
                logarithmic
Ultimanet's avatar
Ultimanet committed
376
377
378
379
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
380
381
                Number of used spectral bins; if given `log` is set to
                ``False``;
Ultimanet's avatar
Ultimanet committed
382
383
384
385
386
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
387
388
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
Ultimanet's avatar
Ultimanet committed
389
390
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Marco Selig's avatar
Marco Selig committed
391
392

        """
393
        raise NotImplementedError(about._errors.cstring(
394
            "ERROR: no generic instance method 'enforce_power'."))
Marco Selig's avatar
Marco Selig committed
395

396
    def check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
397
        """
398
            Checks whether a given codomain is compatible to the space or not.
Marco Selig's avatar
Marco Selig committed
399
400
401

            Parameters
            ----------
402
403
            codomain : nifty.space
                Space to be checked for compatibility.
Marco Selig's avatar
Marco Selig committed
404
405
406

            Returns
            -------
407
408
            check : bool
                Whether or not the given codomain is compatible to the space.
Marco Selig's avatar
Marco Selig committed
409
        """
410
        raise NotImplementedError(about._errors.cstring(
411
            "ERROR: no generic instance method 'check_codomain'."))
Marco Selig's avatar
Marco Selig committed
412

413
    def get_codomain(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
414
        """
415
416
417
            Generates a compatible codomain to which transformations are
            reasonable, usually either the position basis or the basis of
            harmonic eigenmodes.
Marco Selig's avatar
Marco Selig committed
418
419
420

            Parameters
            ----------
421
422
423
424
            coname : string, *optional*
                String specifying a desired codomain (default: None).
            cozerocenter : {bool, numpy.ndarray}, *optional*
                Whether or not the grid is zerocentered for each axis or not
Ultimanet's avatar
Ultimanet committed
425
                (default: None).
426
427
428
429
            conest : list, *optional*
                List of nested spaces of the codomain (default: None).
            coorder : list, *optional*
                Permutation of the list of nested spaces (default: None).
Marco Selig's avatar
Marco Selig committed
430
431
432

            Returns
            -------
433
434
            codomain : nifty.space
                A compatible codomain.
Ultimanet's avatar
Ultimanet committed
435
        """
436
        raise NotImplementedError(about._errors.cstring(
437
            "ERROR: no generic instance method 'get_codomain'."))
Marco Selig's avatar
Marco Selig committed
438

439
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
440
        """
Ultimanet's avatar
Ultimanet committed
441
442
            Generates random field values according to the specifications given
            by the parameters.
Marco Selig's avatar
Marco Selig committed
443

Ultimanet's avatar
Ultimanet committed
444
445
446
447
448
449
450
            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
Marco Selig's avatar
Marco Selig committed
451
            random : string, *optional*
Ultimanet's avatar
Ultimanet committed
452
453
454
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:
Marco Selig's avatar
Marco Selig committed
455
456

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
457
458
                - "gau" (normal distribution with zero-mean and a given
                    standard deviation or variance)
Marco Selig's avatar
Marco Selig committed
459
460
461
462
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
Ultimanet's avatar
Ultimanet committed
463
464
465
466
467
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
468
469
            spec : {scalar, list, numpy.ndarray, nifty.field, function},
                    *optional*
Ultimanet's avatar
Ultimanet committed
470
                Power spectrum (default: 1).
471
472
473
474
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
Ultimanet's avatar
Ultimanet committed
475
                Scale of each band (default: None).
476
            codomain : nifty.space, *optional*
Ultimanet's avatar
Ultimanet committed
477
                A compatible codomain with power indices (default: None).
478
            log : bool, *optional*
479
480
                Flag specifying if the spectral binning is performed on
                logarithmic
481
482
483
484
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
485
486
                Number of used spectral bins; if given `log` is set to
                ``False``;
487
488
489
490
491
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
492
493
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
494
495
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Ultimanet's avatar
Ultimanet committed
496
497
498
499
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
Marco Selig's avatar
Marco Selig committed
500
        """
501
502
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'get_random_values'."))
Marco Selig's avatar
Marco Selig committed
503

504
    def calc_weight(self, x, power=1):
Marco Selig's avatar
Marco Selig committed
505
        """
506
507
            Weights a given array of field values with the pixel volumes (not
            the meta volumes) to a given power.
Marco Selig's avatar
Marco Selig committed
508
509
510

            Parameters
            ----------
511
512
513
514
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).
Marco Selig's avatar
Marco Selig committed
515
516
517

            Returns
            -------
518
519
            y : numpy.ndarray
                Weighted array.
Marco Selig's avatar
Marco Selig committed
520
        """
521
        raise NotImplementedError(about._errors.cstring(
522
            "ERROR: no generic instance method 'calc_weight'."))
Marco Selig's avatar
Marco Selig committed
523

524
525
526
    def get_weight(self, power=1):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'get_weight'."))
Marco Selig's avatar
Marco Selig committed
527

Ultima's avatar
Ultima committed
528
529
530
531
    def calc_norm(self, x, q):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'norm'."))

532
    def calc_dot(self, x, y):
Marco Selig's avatar
Marco Selig committed
533
        """
534
535
            Computes the discrete inner product of two given arrays of field
            values.
Marco Selig's avatar
Marco Selig committed
536
537
538

            Parameters
            ----------
539
540
541
542
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array
Marco Selig's avatar
Marco Selig committed
543
544
545

            Returns
            -------
546
547
            dot : scalar
                Inner product of the two arrays.
Ultimanet's avatar
Ultimanet committed
548
        """
549
        raise NotImplementedError(about._errors.cstring(
550
            "ERROR: no generic instance method 'dot'."))
Marco Selig's avatar
Marco Selig committed
551

552
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
553
        """
554
            Computes the transform of a given array of field values.
Marco Selig's avatar
Marco Selig committed
555

Ultimanet's avatar
Ultimanet committed
556
557
            Parameters
            ----------
558
559
560
561
562
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
                codomain space to which the transformation shall map
                (default: self).
Marco Selig's avatar
Marco Selig committed
563
564
565

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
566
567
            Tx : numpy.ndarray
                Transformed array
568

Ultimanet's avatar
Ultimanet committed
569
570
571
572
            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations performed in specific transformations.
573
        """
574
575
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_transform'."))
Marco Selig's avatar
Marco Selig committed
576

577
    def calc_smooth(self, x, sigma=0, **kwargs):
Marco Selig's avatar
Marco Selig committed
578
        """
Ultimanet's avatar
Ultimanet committed
579
580
            Smoothes an array of field values by convolution with a Gaussian
            kernel.
Marco Selig's avatar
Marco Selig committed
581
582
583

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
584
585
586
587
588
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space (default: 0).
Marco Selig's avatar
Marco Selig committed
589
590
591

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
592
593
            Gx : numpy.ndarray
                Smoothed array.
Marco Selig's avatar
Marco Selig committed
594

Ultimanet's avatar
Ultimanet committed
595
596
597
598
            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations (default: 0).
Marco Selig's avatar
Marco Selig committed
599
        """
600
601
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_smooth'."))
Marco Selig's avatar
Marco Selig committed
602

603
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
604
        """
Ultimanet's avatar
Ultimanet committed
605
            Computes the power of an array of field values.
Marco Selig's avatar
Marco Selig committed
606
607
608

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
609
610
611
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.
Marco Selig's avatar
Marco Selig committed
612
613
614
615

            Returns
            -------
            spec : numpy.ndarray
Ultimanet's avatar
Ultimanet committed
616
                Power contained in the input array.
Marco Selig's avatar
Marco Selig committed
617
618
619

            Other parameters
            ----------------
Ultimanet's avatar
Ultimanet committed
620
621
622
            pindex : numpy.ndarray, *optional*
                Indexing array assigning the input array components to
                components of the power spectrum (default: None).
623
            kindex : numpy.ndarray, *optional*
Ultimanet's avatar
Ultimanet committed
624
625
626
627
                Scale corresponding to each band in the power spectrum
                (default: None).
            rho : numpy.ndarray, *optional*
                Number of degrees of freedom per band (default: None).
628
629
630
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
631
632
                Flag specifying if the spectral binning is performed on
                logarithmic
633
634
635
636
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
637
638
                Number of used spectral bins; if given `log` is set to
                ``False``;
639
640
641
642
643
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
644
645
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
646
647
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
648

Marco Selig's avatar
Marco Selig committed
649
        """
650
651
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_power'."))
Marco Selig's avatar
Marco Selig committed
652

653
654
655
656
657
658
659
    def calc_real_Q(self, x):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_real_Q'."))

    def calc_bincount(self, x, weights=None, minlength=None):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_bincount'."))
Marco Selig's avatar
Marco Selig committed
660

661
    def get_plot(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
662
        """
Ultimanet's avatar
Ultimanet committed
663
664
            Creates a plot of field values according to the specifications
            given by the parameters.
665
666
667

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: False).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).
            error : {float, numpy.ndarray, nifty.field}, *optional*
                Object indicating some confidence interval to be plotted
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
713
714
                Flag specifying if the spectral binning is performed on
                logarithmic
715
716
717
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
Ultimanet's avatar
Ultimanet committed
718
            nbin : integer, *optional*
719
720
                Number of used spectral bins; if given `log` is set to
                ``False``;
721
                integers below the minimum of 3 induce an automatic setting;
722
                by default no binning is done (default: None).
Ultimanet's avatar
Ultimanet committed
723
            binbounds : {list, array}, *optional*
724
725
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
726
727
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
Ultimanet's avatar
Ultimanet committed
728
729
730
731
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
            iter : int, *optional*
                Number of iterations (default: 0).
Marco Selig's avatar
Marco Selig committed
732
733

        """
734
735
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'get_plot'."))
Marco Selig's avatar
Marco Selig committed
736

Ultimanet's avatar
Ultimanet committed
737
738
    def __repr__(self):
        return "<nifty_core.space>"
Marco Selig's avatar
Marco Selig committed
739

Ultimanet's avatar
Ultimanet committed
740
    def __str__(self):
741
742
        return "nifty_core.space instance\n- para     = " + str(self.para) + \
            "\n- dtype = " + str(self.dtype.type)
Marco Selig's avatar
Marco Selig committed
743
744


Ultimanet's avatar
Ultimanet committed
745
class point_space(space):
Marco Selig's avatar
Marco Selig committed
746
    """
Ultimanet's avatar
Ultimanet committed
747
748
749
750
751
752
753
        ..                            __             __
        ..                          /__/           /  /_
        ..      ______    ______    __   __ ___   /   _/
        ..    /   _   | /   _   | /  / /   _   | /  /
        ..   /  /_/  / /  /_/  / /  / /  / /  / /  /_
        ..  /   ____/  \______/ /__/ /__/ /__/  \___/  space class
        .. /__/
Marco Selig's avatar
Marco Selig committed
754

Ultimanet's avatar
Ultimanet committed
755
        NIFTY subclass for unstructured spaces.
Marco Selig's avatar
Marco Selig committed
756

Ultimanet's avatar
Ultimanet committed
757
758
        Unstructured spaces are lists of values without any geometrical
        information.
Marco Selig's avatar
Marco Selig committed
759
760
761

        Parameters
        ----------
Ultimanet's avatar
Ultimanet committed
762
763
        num : int
            Number of points.
764
        dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
765
            Data type of the field values (default: None).
Marco Selig's avatar
Marco Selig committed
766

Ultimanet's avatar
Ultimanet committed
767
        Attributes
Marco Selig's avatar
Marco Selig committed
768
        ----------
Ultimanet's avatar
Ultimanet committed
769
770
        para : numpy.ndarray
            Array containing the number of points.
771
        dtype : numpy.dtype
Ultimanet's avatar
Ultimanet committed
772
773
774
775
776
777
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that a :py:class:`point_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`point_space`, which is always 1.
Marco Selig's avatar
Marco Selig committed
778
    """
779

780
781
    def __init__(self, num, dtype=np.dtype('float'), datamodel='fftw',
                 comm=gc['default_comm']):
Ultimanet's avatar
Ultimanet committed
782
783
        """
            Sets the attributes for a point_space class instance.
Marco Selig's avatar
Marco Selig committed
784

Ultimanet's avatar
Ultimanet committed
785
786
787
788
            Parameters
            ----------
            num : int
                Number of points.
789
            dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
790
                Data type of the field values (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
791

Ultimanet's avatar
Ultimanet committed
792
793
794
795
            Returns
            -------
            None.
        """
796
797
        self.paradict = point_space_paradict(num=num)

798
799
        # parse dtype
        dtype = np.dtype(dtype)
Ultima's avatar
Ultima committed
800
801
802
803
804
805
806
807
808
        if dtype not in [np.dtype('bool'),
                         np.dtype('int16'),
                         np.dtype('int32'),
                         np.dtype('int64'),
                         np.dtype('float32'),
                         np.dtype('float64'),
                         np.dtype('complex64'),
                         np.dtype('complex128')]:
            raise ValueError(about._errors.cstring(
809
                             "WARNING: incompatible dtype: " + str(dtype)))
Ultima's avatar
Ultima committed
810
        self.dtype = dtype
811
812

        if datamodel not in ['np'] + POINT_DISTRIBUTION_STRATEGIES:
Ultima's avatar
Ultima committed
813
            about._errors.cstring("WARNING: datamodel set to default.")
814
            self.datamodel = \
815
                gc['default_distribution_strategy']
816
817
        else:
            self.datamodel = datamodel
818

819
        self.comm = self._parse_comm(comm)
Ultimanet's avatar
Ultimanet committed
820
        self.discrete = True
821
        self.harmonic = False
822
        self.distances = (np.float(1),)
Marco Selig's avatar
Marco Selig committed
823

Ultimanet's avatar
Ultimanet committed
824
825
826
827
    @property
    def para(self):
        temp = np.array([self.paradict['num']], dtype=int)
        return temp
828

Ultimanet's avatar
Ultimanet committed
829
830
    @para.setter
    def para(self, x):
Ultima's avatar
Ultima committed
831
        self.paradict['num'] = x[0]
832

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: x[1].__hash__() if x[0] == 'comm' else x)(ii)))
                for ii in vars(self).iteritems()
                ]
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))

    def _parse_comm(self, comm):
        # check if comm is a string -> the name of comm is given
        # -> Extract it from the mpi_module
        if isinstance(comm, str):
            if gc.validQ('default_comm', comm):
                result_comm = getattr(gdi[gc['mpi_module']], comm)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: The given communicator-name is not supported."))
        # check if the given comm object is an instance of default Intracomm
        else:
            if isinstance(comm, gdi[gc['mpi_module']].Intracomm):
                result_comm = comm
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: The given comm object is not an instance of the " +
                    "default-MPI-module's Intracomm Class."))
        return result_comm

861
    def copy(self):
862
        return point_space(num=self.paradict['num'],
863
                           dtype=self.dtype,
864
865
                           datamodel=self.datamodel,
                           comm=self.comm)
866

Ultimanet's avatar
Ultimanet committed
867
868
    def getitem(self, data, key):
        return data[key]
Marco Selig's avatar
Marco Selig committed
869

Ultimanet's avatar
Ultimanet committed
870
    def setitem(self, data, update, key):
871
        data[key] = update
Marco Selig's avatar
Marco Selig committed
872

Ultimanet's avatar
Ultimanet committed
873
    def apply_scalar_function(self, x, function, inplace=False):
874
        if self.datamodel == 'np':
875
            if not inplace:
876
                try:
877
878
879
880
881
882
883
884
885
                    return function(x)
                except:
                    return np.vectorize(function)(x)
            else:
                try:
                    x[:] = function(x)
                except:
                    x[:] = np.vectorize(function)(x)
                return x
886
887

        elif self.datamodel in POINT_DISTRIBUTION_STRATEGIES:
888
            return x.apply_scalar_function(function, inplace=inplace)
Ultimanet's avatar
Ultimanet committed
889
        else:
890
891
892
            raise NotImplementedError(about._errors.cstring(
                "ERROR: function is not implemented for given datamodel."))

Ultimanet's avatar
Ultimanet committed
893
894
895
896
    def unary_operation(self, x, op='None', **kwargs):
        """
        x must be a numpy array which is compatible with the space!
        Valid operations are
897

Ultimanet's avatar
Ultimanet committed
898
        """
899
        if self.datamodel == 'np':
900
901
902
903
            def _argmin(z, **kwargs):
                ind = np.argmin(z, **kwargs)
                if np.isscalar(ind):
                    ind = np.unravel_index(ind, z.shape, order='C')
904
                    if(len(ind) == 1):
905
                        return ind[0]
906
907
                return ind

908
909
910
911
            def _argmax(z, **kwargs):
                ind = np.argmax(z, **kwargs)
                if np.isscalar(ind):
                    ind = np.unravel_index(ind, z.shape, order='C')
912
                    if(len(ind) == 1):
913
                        return ind[0]
914
915
                return ind

Ultima's avatar
Ultima committed
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
            translation = {'pos': lambda y: getattr(y, '__pos__')(),
                           'neg': lambda y: getattr(y, '__neg__')(),
                           'abs': lambda y: getattr(y, '__abs__')(),
                           'real': lambda y: getattr(y, 'real'),
                           'imag': lambda y: getattr(y, 'imag'),
                           'nanmin': np.nanmin,
                           'amin': np.amin,
                           'nanmax': np.nanmax,
                           'amax': np.amax,
                           'median': np.median,
                           'mean': np.mean,
                           'std': np.std,
                           'var': np.var,
                           'argmin': _argmin,
                           'argmin_flat': np.argmin,
                           'argmax': _argmax,
                           'argmax_flat': np.argmax,
                           'conjugate': np.conjugate,
                           'sum': np.sum,
                           'prod': np.prod,
                           'unique': np.unique,
                           'copy': np.copy,
                           'copy_empty': np.empty_like,
                           'isnan': np.isnan,
                           'isinf': np.isinf,
                           'isfinite': np.isfinite,
                           'nan_to_num': np.nan_to_num,
                           'all': np.all,
                           'any': np.any,
                           'None': lambda y: y}
946
947

        elif self.datamodel in POINT_DISTRIBUTION_STRATEGIES:
Ultima's avatar
Ultima committed
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
            translation = {'pos': lambda y: getattr(y, '__pos__')(),
                           'neg': lambda y: getattr(y, '__neg__')(),
                           'abs': lambda y: getattr(y, '__abs__')(),
                           'real': lambda y: getattr(y, 'real'),
                           'imag': lambda y: getattr(y, 'imag'),
                           'nanmin': lambda y: getattr(y, 'nanmin')(),
                           'amin': lambda y: getattr(y, 'amin')(),
                           'nanmax': lambda y: getattr(y, 'nanmax')(),
                           'amax': lambda y: getattr(y, 'amax')(),
                           'median': lambda y: getattr(y, 'median')(),
                           'mean': lambda y: getattr(y, 'mean')(),
                           'std': lambda y: getattr(y, 'std')(),
                           'var': lambda y: getattr(y, 'var')(),
                           'argmin': lambda y: getattr(y, 'argmin_nonflat')(),
                           'argmin_flat': lambda y: getattr(y, 'argmin')(),
                           'argmax': lambda y: getattr(y, 'argmax_nonflat')(),
                           'argmax_flat': lambda y: getattr(y, 'argmax')(),
                           'conjugate': lambda y: getattr(y, 'conjugate')(),
                           'sum': lambda y: getattr(y, 'sum')(),
                           'prod': lambda y: getattr(y, 'prod')(),
                           'unique': lambda y: getattr(y, 'unique')(),
                           'copy': lambda y: getattr(y, 'copy')(),
                           'copy_empty': lambda y: getattr(y, 'copy_empty')(),
                           'isnan': lambda y: getattr(y, 'isnan')(),
                           'isinf': lambda y: getattr(y, 'isinf')(),
                           'isfinite': lambda y: getattr(y, 'isfinite')(),
                           'nan_to_num': lambda y: getattr(y, 'nan_to_num')(),
                           'all': lambda y: getattr(y, 'all')(),
                           'any': lambda y: getattr(y, 'any')(),
                           'None': lambda y: y}
978
979
980
        else:
            raise NotImplementedError(about._errors.cstring(
                "ERROR: function is not implemented for given datamodel."))
Marco Selig's avatar
Marco Selig committed
981

982
983
        return translation[op](x, **kwargs)

Ultimanet's avatar
Ultimanet committed
984
    def binary_operation(self, x, y, op='None', cast=0):
985

Ultima's avatar
Ultima committed
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
        translation = {'add': lambda z: getattr(z, '__add__'),
                       'radd': lambda z: getattr(z, '__radd__'),
                       'iadd': lambda z: getattr(z, '__iadd__'),
                       'sub': lambda z: getattr(z, '__sub__'),
                       'rsub': lambda z: getattr(z, '__rsub__'),
                       'isub': lambda z: getattr(z, '__isub__'),
                       'mul': lambda z: getattr(z, '__mul__'),
                       'rmul': lambda z: getattr(z, '__rmul__'),
                       'imul': lambda z: getattr(z, '__imul__'),
                       'div': lambda z: getattr(z, '__div__'),
                       'rdiv': lambda z: getattr(z, '__rdiv__'),
                       'idiv': lambda z: getattr(z, '__idiv__'),
                       'pow': lambda z: getattr(z, '__pow__'),
                       'rpow': lambda z: getattr(z, '__rpow__'),
                       'ipow': lambda z: getattr(z, '__ipow__'),
                       'ne': lambda z: getattr(z, '__ne__'),
                       'lt': lambda z: getattr(z, '__lt__'),
                       'le': lambda z: getattr(z, '__le__'),
                       'eq': lambda z: getattr(z, '__eq__'),
                       'ge': lambda z: getattr(z, '__ge__'),
                       'gt': lambda z: getattr(z, '__gt__'),
                       'None': lambda z: lambda u: u}
1008

Ultimanet's avatar
Ultimanet committed
1009
1010
1011
        if (cast & 1) != 0:
            x = self.cast(x)
        if (cast & 2) != 0:
1012
1013
            y = self.cast(y)

Ultimanet's avatar
Ultimanet committed
1014
        return translation[op](x)(y)
Marco Selig's avatar
Marco Selig committed
1015

1016
    def get_shape(self):
1017
        return (self.paradict['num'],)
Marco Selig's avatar
Marco Selig committed
1018

Ultima's avatar
Ultima committed
1019
    def get_dim(self):
Ultimanet's avatar
Ultimanet committed
1020
1021
        """
            Computes the dimension of the space, i.e.\  the number of points.
Marco Selig's avatar
Marco Selig committed
1022

Ultimanet's avatar
Ultimanet committed
1023
1024
1025
1026
1027
            Parameters
            ----------
            split : bool, *optional*
                Whether to return the dimension as an array with one component
                or as a scalar (default: False).
Marco Selig's avatar
Marco Selig committed
1028

Ultimanet's avatar
Ultimanet committed
1029
1030
1031
1032
1033
            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
        """
Ultima's avatar
Ultima committed
1034
        return np.prod(self.get_shape())
Marco Selig's avatar
Marco Selig committed
1035

1036
    def get_dof(self, split=False):
Ultimanet's avatar
Ultimanet committed
1037
1038
1039
1040
        """
            Computes the number of degrees of freedom of the space, i.e./  the
            number of points for real-valued fields and twice that number for
            complex-valued fields.
Marco Selig's avatar
Marco Selig committed
1041

Ultimanet's avatar
Ultimanet committed
1042
1043
1044
1045
1046
            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.
        """
Ultima's avatar
Ultima committed
1047
1048
1049
1050
        if split:
            dof = self.get_shape()
            if issubclass(self.dtype.type, np.complexfloating):
                dof = tuple(np.array(dof)*2)
1051
        else:
Ultima's avatar
Ultima committed
1052
1053
1054
1055
            dof = self.get_dim()
            if issubclass(self.dtype.type, np.complexfloating):
                dof = dof * 2
        return dof
1056
1057
1058
1059

    def get_vol(self, split=False):
        if split:
            return self.distances
Ultimanet's avatar
Ultimanet committed
1060
        else:
1061
            return np.prod(self.distances)
Marco Selig's avatar
Marco Selig committed
1062

1063
    def get_meta_volume(self, split=False):
Marco Selig's avatar
Marco Selig committed
1064
        """
1065
            Calculates the meta volumes.
Ultimanet's avatar
Ultimanet committed
1066

1067
1068
1069
1070
1071
            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions. In the case of an :py:class:`rg_space`, the
            meta volumes are simply the pixel volumes.
Marco Selig's avatar
Marco Selig committed
1072
1073
1074

            Parameters
            ----------
1075
1076
1077
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each pixel (default: False).
Marco Selig's avatar
Marco Selig committed
1078
1079
1080

            Returns
            -------
1081
1082
            mol : {numpy.ndarray, float}
                Meta volume of the pixels or the complete space.
Ultimanet's avatar
Ultimanet committed
1083
        """
1084
1085
1086
1087
1088
        if not split:
            return self.get_dim() * self.get_vol()
        else:
            mol = self.cast(1, dtype=np.dtype('float'))
            return self.calc_weight(mol, power=1)
1089

Ultima's avatar
Ultima committed
1090
    def cast(self, x=None, dtype=None, **kwargs):
1091
        if dtype is not None:
1092
            dtype = np.dtype(dtype)
1093

Ultima's avatar
Ultima committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
        # If x is a field, extract the data and do a recursive call
        if isinstance(x, field):
            # Check if the domain matches
            if self != x.domain:
                about.warnings.cflush(
                    "WARNING: Getting data from foreign domain!")
            # Extract the data, whatever it is, and cast it again
            return self.cast(x.val,
                             dtype=dtype,
                             **kwargs)

1105
        if self.datamodel in POINT_DISTRIBUTION_STRATEGIES:
Ultima's avatar
Ultima committed
1106
1107
            return self._cast_to_d2o(x=x,
                                     dtype=dtype,
1108
                                     **kwargs)
1109
        elif self.datamodel == 'np':
Ultima's avatar
Ultima committed
1110
1111
            return self._cast_to_np(x=x,
                                    dtype=dtype,
1112
                                    **kwargs)
1113
1114
1115
1116
        else:
            raise NotImplementedError(about._errors.cstring(
                "ERROR: function is not implemented for given datamodel."))

Ultima's avatar
Ultima committed
1117
    def _cast_to_d2o(self, x, dtype=None, **kwargs):
1118
1119
        """
            Computes valid field values from a given object, trying
1120
1121
            to translate the given data into a valid form. Thereby it is as
            benevolent as possible.
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136

            Parameters