iteration_controllers.py 13.1 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

18
19
20
21
from time import time

import numpy as np

Martin Reinecke's avatar
Martin Reinecke committed
22
from ..logger import logger
Martin Reinecke's avatar
Martin Reinecke committed
23
from ..utilities import NiftyMeta
Martin Reinecke's avatar
Martin Reinecke committed
24
25


Martin Reinecke's avatar
Martin Reinecke committed
26
class IterationController(metaclass=NiftyMeta):
Martin Reinecke's avatar
Martin Reinecke committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    """The abstract base class for all iteration controllers.
    An iteration controller is an object that monitors the progress of a
    minimization iteration. At the begin of the minimization, its start()
    method is called with the energy object at the initial position.
    Afterwards, its check() method is called during every iteration step with
    the energy object describing the current position.
    Based on that information, the iteration controller has to decide whether
    iteration needs to progress further (in this case it returns CONTINUE), or
    if sufficient convergence has been reached (in this case it returns
    CONVERGED), or if some error has been detected (then it returns ERROR).

    The concrete convergence criteria can be chosen by inheriting from this
    class; the implementer has full flexibility to use whichever criteria are
    appropriate for a particular problem - as long as they can be computed from
    the information passed to the controller during the iteration process.
    """

    CONVERGED, CONTINUE, ERROR = list(range(3))

    def start(self, energy):
        """Starts the iteration.

        Parameters
        ----------
        energy : Energy object
           Energy object at the start of the iteration

        Returns
        -------
        status : integer status, can be CONVERGED, CONTINUE or ERROR
        """
        raise NotImplementedError

    def check(self, energy):
        """Checks the state of the iteration. Called after every step.

        Parameters
        ----------
        energy : Energy object
           Energy object at the start of the iteration

        Returns
        -------
        status : integer status, can be CONVERGED, CONTINUE or ERROR
        """
        raise NotImplementedError


class GradientNormController(IterationController):
    """An iteration controller checking (mainly) the L2 gradient norm.

    Parameters
    ----------
    tol_abs_gradnorm : float, optional
        If the L2 norm of the energy gradient is below this value, the
        convergence counter will be increased in this iteration.
    tol_rel_gradnorm : float, optional
        If the L2 norm of the energy gradient divided by its initial L2 norm
        is below this value, the convergence counter will be increased in this
        iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
95
96
    p : float
        Order of norm, default is the 2-Norm (p=2)
Martin Reinecke's avatar
Martin Reinecke committed
97
98
99
    """

    def __init__(self, tol_abs_gradnorm=None, tol_rel_gradnorm=None,
100
101
                 convergence_level=1, iteration_limit=None, name=None, p=2,
                 file_name=None):
Martin Reinecke's avatar
Martin Reinecke committed
102
103
104
105
106
        self._tol_abs_gradnorm = tol_abs_gradnorm
        self._tol_rel_gradnorm = tol_rel_gradnorm
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name
107
        self._p = p
108
        self._file_name = file_name
Martin Reinecke's avatar
Martin Reinecke committed
109
110
111
112
113

    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        if self._tol_rel_gradnorm is not None:
114
            self._tol_rel_gradnorm_now = self._tol_rel_gradnorm * self._norm(energy)
Martin Reinecke's avatar
Martin Reinecke committed
115
116
        return self.check(energy)

117
118
119
120
121
122
    def _norm(self, energy):
        # FIXME Only p=2 norm is cached in energy class
        if self._p == 2:
            return energy.gradient_norm
        return energy.gradient.norm(self._p)

Martin Reinecke's avatar
Martin Reinecke committed
123
124
125
126
127
    def check(self, energy):
        self._itcount += 1

        inclvl = False
        if self._tol_abs_gradnorm is not None:
128
            if self._norm(energy) <= self._tol_abs_gradnorm:
Martin Reinecke's avatar
Martin Reinecke committed
129
130
                inclvl = True
        if self._tol_rel_gradnorm is not None:
131
            if self._norm(energy) <= self._tol_rel_gradnorm_now:
Martin Reinecke's avatar
Martin Reinecke committed
132
133
134
135
136
137
138
139
140
141
142
                inclvl = True
        if inclvl:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
                "{}: Iteration #{} energy={:.6E} gradnorm={:.2E} clvl={}"
                .format(self._name, self._itcount, energy.value,
143
                        self._norm(energy), self._ccount))
Martin Reinecke's avatar
Martin Reinecke committed
144
145
146
147
148

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
149
                    "{}Iteration limit reached. Assuming convergence"
Martin Reinecke's avatar
Martin Reinecke committed
150
151
152
153
154
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

155
156
157
158
159
160
        # Write energy to file
        if self._file_name is not None:
            with open(self._file_name, 'a+') as f:
                f.write('{} {} {}\n'.format(time(), energy.value,
                                            self._norm(energy)))

Martin Reinecke's avatar
Martin Reinecke committed
161
162
163
164
        return self.CONTINUE


class GradInfNormController(IterationController):
Martin Reinecke's avatar
Martin Reinecke committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    """An iteration controller checking (mainly) the L_infinity gradient norm.

    Parameters
    ----------
    tol : float
        If the L_infinity norm of the energy gradient is below this value, the
        convergence counter will be increased in this iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
    """

    def __init__(self, tol, convergence_level=1, iteration_limit=None,
183
                 name=None, file_name=None):
Martin Reinecke's avatar
Martin Reinecke committed
184
185
186
187
        self._tol = tol
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name
188
        self._file_name = file_name
Martin Reinecke's avatar
Martin Reinecke committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        return self.check(energy)

    def check(self, energy):
        self._itcount += 1

        crit = energy.gradient.norm(np.inf) / abs(energy.value)
        if self._tol is not None and crit <= self._tol:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
                "{}: Iteration #{} energy={:.6E} crit={:.2E} clvl={}"
                .format(self._name, self._itcount, energy.value,
                        crit, self._ccount))
Martin Reinecke's avatar
Martin Reinecke committed
210
211
212
213
214
215
216
217
218
219
220

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
                    "{} Iteration limit reached. Assuming convergence"
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

221
222
223
224
225
226
        # Write energy to file
        if self._file_name is not None:
            with open(self._file_name, 'a+') as f:
                f.write('{} {} {}\n'.format(time(), energy.value,
                                            crit))

Martin Reinecke's avatar
Martin Reinecke committed
227
228
229
230
        return self.CONTINUE


class DeltaEnergyController(IterationController):
Martin Reinecke's avatar
Martin Reinecke committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    """An iteration controller checking (mainly) the energy change from one
    iteration to the next.

    Parameters
    ----------
    tol_rel_deltaE : float
        If the difference between the last and current energies divided by
        the current energy is below this value, the convergence counter will
        be increased in this iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
    """

Martin Reinecke's avatar
Martin Reinecke committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    def __init__(self, tol_rel_deltaE, convergence_level=1,
                 iteration_limit=None, name=None):
        self._tol_rel_deltaE = tol_rel_deltaE
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name

    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        self._Eold = 0.
        return self.check(energy)

    def check(self, energy):
        self._itcount += 1

        inclvl = False
        Eval = energy.value
        rel = abs(self._Eold-Eval)/max(abs(self._Eold), abs(Eval))
        if self._itcount > 0:
            if rel < self._tol_rel_deltaE:
                inclvl = True
        self._Eold = Eval
        if inclvl:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
                "{}: Iteration #{} energy={:.6E} reldiff={:.6E} clvl={}"
                .format(self._name, self._itcount, Eval, rel, self._ccount))

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
                    "{} Iteration limit reached. Assuming convergence"
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

        return self.CONTINUE
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316


class AbsDeltaEnergyController(IterationController):
    """An iteration controller checking (mainly) the energy change from one
    iteration to the next.

    Parameters
    ----------
    tol_rel_deltaE : float
        If the difference between the last and current energies divided by
        the current energy is below this value, the convergence counter will
        be increased in this iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
    """

317
318
    def __init__(self, deltaE, convergence_level=1, iteration_limit=None,
                 name=None, file_name=None):
319
320
321
322
        self._deltaE = deltaE
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name
323
        self._file_name = file_name
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        self._Eold = 0.
        return self.check(energy)

    def check(self, energy):
        self._itcount += 1

        inclvl = False
        Eval = energy.value
        diff = abs(self._Eold-Eval)
        if self._itcount > 0:
            if diff < self._deltaE:
                inclvl = True
        self._Eold = Eval
        if inclvl:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
349
350
351
                "{}: Iteration #{} energy={:.6E} diff={:.6E} crit={:.6E} clvl={}"
                .format(self._name, self._itcount, Eval, diff, self._deltaE,
                        self._ccount))
352
353
354
355
356
357
358
359
360
361
362

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
                    "{} Iteration limit reached. Assuming convergence"
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

363
364
365
366
367
        # Write energy to file
        if self._file_name is not None:
            with open(self._file_name, 'a+') as f:
                f.write('{} {} {}\n'.format(time(), energy.value, diff))

368
        return self.CONTINUE