Wiener_Filter.ipynb 18.2 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# A NIFTy demonstration"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "## IFT: Big Picture\n",
    "IFT starting point:\n",
    "\n",
    "$$d = Rs+n$$\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
27
    "Typically, $s$ is a continuous field, $d$ a discrete data vector. Particularly, $R$ is not invertible.\n",
Philipp Arras's avatar
Philipp Arras committed
28
29
30
31
32
33
    "\n",
    "IFT aims at **inverting** the above uninvertible problem in the **best possible way** using Bayesian statistics.\n",
    "\n",
    "\n",
    "## NIFTy\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
34
    "NIFTy (Numerical Information Field Theory) is a Python framework in which IFT problems can be tackled easily.\n",
Philipp Arras's avatar
Philipp Arras committed
35
36
37
38
39
    "\n",
    "Main Interfaces:\n",
    "\n",
    "- **Spaces**: Cartesian, 2-Spheres (Healpix, Gauss-Legendre) and their respective harmonic spaces.\n",
    "- **Fields**: Defined on spaces.\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
40
    "- **Operators**: Acting on fields."
Philipp Arras's avatar
Philipp Arras committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "## Wiener Filter: Formulae\n",
    "\n",
    "### Assumptions\n",
    "\n",
    "- $d=Rs+n$, $R$ linear operator.\n",
    "- $\\mathcal P (s) = \\mathcal G (s,S)$, $\\mathcal P (n) = \\mathcal G (n,N)$ where $S, N$ are positive definite matrices.\n",
    "\n",
    "### Posterior\n",
    "The Posterior is given by:\n",
    "\n",
    "$$\\mathcal P (s|d) \\propto P(s,d) = \\mathcal G(d-Rs,N) \\,\\mathcal G(s,S) \\propto \\mathcal G (m,D) $$\n",
    "\n",
    "where\n",
    "$$\\begin{align}\n",
    "m &= Dj \\\\\n",
    "D^{-1}&= (S^{-1} +R^\\dagger N^{-1} R )\\\\\n",
    "j &= R^\\dagger N^{-1} d\n",
    "\\end{align}$$\n",
    "\n",
    "Let us implement this in NIFTy!"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "## Wiener Filter: Example\n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
83
84
    "- We assume statistical homogeneity and isotropy. Therefore the signal covariance $S$ is diagonal in harmonic space, and is described by a one-dimensional power spectrum, assumed here as $$P(k) = P_0\\,\\left(1+\\left(\\frac{k}{k_0}\\right)^2\\right)^{-\\gamma /2},$$\n",
    "with $P_0 = 0.2, k_0 = 5, \\gamma = 4$.\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
85
    "- $N = 0.2 \\cdot \\mathbb{1}$.\n",
Martin Reinecke's avatar
Martin Reinecke committed
86
87
    "- Number of data points $N_{pix} = 512$.\n",
    "- reconstruction in harmonic space.\n",
Philipp Arras's avatar
Philipp Arras committed
88
    "- Response operator:\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
89
    "$$R = FFT_{\\text{harmonic} \\rightarrow \\text{position}}$$\n"
Philipp Arras's avatar
Philipp Arras committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "N_pixels = 512     # Number of pixels\n",
    "\n",
    "def pow_spec(k):\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
105
106
    "    P0, k0, gamma = [.2, 5, 4]\n",
    "    return P0 / ((1. + (k/k0)**2)**(gamma / 2))"
Philipp Arras's avatar
Philipp Arras committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Wiener Filter: Implementation"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "source": [
    "### Import Modules"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
142
    "np.random.seed(40)\n",
Philipp Arras's avatar
Philipp Arras committed
143
    "import nifty5 as ift\n",
144
145
    "import matplotlib.pyplot as plt\n",
    "%matplotlib inline"
Philipp Arras's avatar
Philipp Arras committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Implement Propagator"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
169
    "def Curvature(R, N, Sh):\n",
Martin Reinecke's avatar
Martin Reinecke committed
170
    "    IC = ift.GradientNormController(iteration_limit=50000,\n",
171
    "                                    tol_abs_gradnorm=0.1)\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
172
173
    "    # WienerFilterCurvature is (R.adjoint*N.inverse*R + Sh.inverse) plus some handy\n",
    "    # helper methods.\n",
174
    "    return ift.library.WienerFilterCurvature(R,N,Sh,iteration_controller=IC)"
Philipp Arras's avatar
Philipp Arras committed
175
176
177
178
179
180
181
182
183
184
185
186
187
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Conjugate Gradient Preconditioning\n",
    "\n",
    "- $D$ is defined via:\n",
Martin Reinecke's avatar
Martin Reinecke committed
188
    "$$D^{-1} = \\mathcal S_h^{-1} + R^\\dagger N^{-1} R.$$\n",
Philipp Arras's avatar
Philipp Arras committed
189
190
    "In the end, we want to apply $D$ to $j$, i.e. we need the inverse action of $D^{-1}$. This is done numerically (algorithm: *Conjugate Gradient*). \n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
191
    "<!--\n",
Philipp Arras's avatar
Philipp Arras committed
192
193
194
195
196
197
    "- One can define the *condition number* of a non-singular and normal matrix $A$:\n",
    "$$\\kappa (A) := \\frac{|\\lambda_{\\text{max}}|}{|\\lambda_{\\text{min}}|},$$\n",
    "where $\\lambda_{\\text{max}}$ and $\\lambda_{\\text{min}}$ are the largest and smallest eigenvalue of $A$, respectively.\n",
    "\n",
    "- The larger $\\kappa$ the slower Conjugate Gradient.\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
198
    "- By default, conjugate gradient solves: $D^{-1} m = j$ for $m$, where $D^{-1}$ can be badly conditioned. If one knows a non-singular matrix $T$ for which $TD^{-1}$ is better conditioned, one can solve the equivalent problem:\n",
Philipp Arras's avatar
Philipp Arras committed
199
200
201
202
203
    "$$\\tilde A m = \\tilde j,$$\n",
    "where $\\tilde A = T D^{-1}$ and $\\tilde j = Tj$.\n",
    "\n",
    "- In our case $S^{-1}$ is responsible for the bad conditioning of $D$ depending on the chosen power spectrum. Thus, we choose\n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
204
205
    "$$T = \\mathcal F^\\dagger S_h^{-1} \\mathcal F.$$\n",
    "-->"
Philipp Arras's avatar
Philipp Arras committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Generate Mock data\n",
    "\n",
    "- Generate a field $s$ and $n$ with given covariances.\n",
    "- Calculate $d$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Martin Reinecke's avatar
Martin Reinecke committed
225
   "metadata": {},
Philipp Arras's avatar
Philipp Arras committed
226
227
   "outputs": [],
   "source": [
228
229
230
    "s_space = ift.RGSpace(N_pixels)\n",
    "h_space = s_space.get_default_codomain()\n",
    "HT = ift.HarmonicTransformOperator(h_space, target=s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
231
232
    "\n",
    "# Operators\n",
233
234
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
    "R = HT #*ift.create_harmonic_smoothing_operator((h_space,), 0, 0.02)\n",
Philipp Arras's avatar
Philipp Arras committed
235
236
    "\n",
    "# Fields and data\n",
237
    "sh = Sh.draw_sample()\n",
238
    "noiseless_data=R(sh)\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
239
    "noise_amplitude = np.sqrt(0.2)\n",
240
241
242
    "N = ift.ScalingOperator(noise_amplitude**2, s_space)\n",
    "\n",
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
243
    "                          std=noise_amplitude, mean=0)\n",
244
245
    "d = noiseless_data + n\n",
    "j = R.adjoint_times(N.inverse_times(d))\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
246
247
    "curv = Curvature(R=R, N=N, Sh=Sh)\n",
    "D = curv.inverse"
Philipp Arras's avatar
Philipp Arras committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Run Wiener Filter"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "m = D(j)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
282
    "### Signal Reconstruction"
Philipp Arras's avatar
Philipp Arras committed
283
284
285
286
287
288
289
290
291
292
293
294
295
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "# Get signal data and reconstruction data\n",
Martin Reinecke's avatar
Martin Reinecke committed
296
297
    "s_data = HT(sh).to_global_data()\n",
    "m_data = HT(m).to_global_data()\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
298
    "d_data = d.to_global_data()\n",
Philipp Arras's avatar
Philipp Arras committed
299
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
300
    "plt.figure(figsize=(15,10))\n",
Martin Reinecke's avatar
Martin Reinecke committed
301
302
303
    "plt.plot(s_data, 'r', label=\"Signal\", linewidth=3)\n",
    "plt.plot(d_data, 'k.', label=\"Data\")\n",
    "plt.plot(m_data, 'k', label=\"Reconstruction\",linewidth=3)\n",
Philipp Arras's avatar
Philipp Arras committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    "plt.title(\"Reconstruction\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
319
    "plt.figure(figsize=(15,10))\n",
Martin Reinecke's avatar
Martin Reinecke committed
320
321
322
    "plt.plot(s_data - s_data, 'r', label=\"Signal\", linewidth=3)\n",
    "plt.plot(d_data - s_data, 'k.', label=\"Data\")\n",
    "plt.plot(m_data - s_data, 'k', label=\"Reconstruction\",linewidth=3)\n",
323
    "plt.axhspan(-noise_amplitude,noise_amplitude, facecolor='0.9', alpha=.5)\n",
Philipp Arras's avatar
Philipp Arras committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    "plt.title(\"Residuals\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Power Spectrum"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
350
351
    "s_power_data = ift.power_analyze(sh).to_global_data()\n",
    "m_power_data = ift.power_analyze(m).to_global_data()\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
352
    "plt.figure(figsize=(15,10))\n",
Philipp Arras's avatar
Philipp Arras committed
353
354
355
356
357
    "plt.loglog()\n",
    "plt.xlim(1, int(N_pixels/2))\n",
    "ymin = min(m_power_data)\n",
    "plt.ylim(ymin, 1)\n",
    "xs = np.arange(1,int(N_pixels/2),.1)\n",
Martin Reinecke's avatar
Martin Reinecke committed
358
359
360
    "plt.plot(xs, pow_spec(xs), label=\"True Power Spectrum\", color='k',alpha=0.5)\n",
    "plt.plot(s_power_data, 'r', label=\"Signal\")\n",
    "plt.plot(m_power_data, 'k', label=\"Reconstruction\")\n",
361
362
    "plt.axhline(noise_amplitude**2 / N_pixels, color=\"k\", linestyle='--', label=\"Noise level\", alpha=.5)\n",
    "plt.axhspan(noise_amplitude**2 / N_pixels, ymin, facecolor='0.9', alpha=.5)\n",
Philipp Arras's avatar
Philipp Arras committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    "plt.title(\"Power Spectrum\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Wiener Filter on Incomplete Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "# Operators\n",
390
391
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
    "N = ift.ScalingOperator(noise_amplitude**2,s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
392
393
394
    "# R is defined below\n",
    "\n",
    "# Fields\n",
395
    "sh = Sh.draw_sample()\n",
396
397
398
    "s = HT(sh)\n",
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
    "                      std=noise_amplitude, mean=0)"
Philipp Arras's avatar
Philipp Arras committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Partially Lose Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "l = int(N_pixels * 0.2)\n",
423
    "h = int(N_pixels * 0.2 * 2)\n",
Philipp Arras's avatar
Philipp Arras committed
424
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
425
426
427
    "mask = np.full(s_space.shape, 1.)\n",
    "mask[l:h] = 0\n",
    "mask = ift.Field.from_global_data(s_space, mask)\n",
Philipp Arras's avatar
Philipp Arras committed
428
    "\n",
429
    "R = ift.DiagonalOperator(mask)*HT\n",
Martin Reinecke's avatar
Martin Reinecke committed
430
431
432
    "n = n.to_global_data()\n",
    "n[l:h] = 0\n",
    "n = ift.Field.from_global_data(s_space, n)\n",
Philipp Arras's avatar
Philipp Arras committed
433
    "\n",
434
    "d = R(sh) + n"
Philipp Arras's avatar
Philipp Arras committed
435
436
437
438
439
440
441
442
443
444
445
446
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
447
448
    "curv = Curvature(R=R, N=N, Sh=Sh)\n",
    "D = curv.inverse\n",
Philipp Arras's avatar
Philipp Arras committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    "j = R.adjoint_times(N.inverse_times(d))\n",
    "m = D(j)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Compute Uncertainty\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
468
    "scrolled": true
Philipp Arras's avatar
Philipp Arras committed
469
470
471
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
Martin Reinecke committed
472
    "m_mean, m_var = ift.probe_with_posterior_samples(curv, HT, 200)"
Philipp Arras's avatar
Philipp Arras committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Get data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "# Get signal data and reconstruction data\n",
Martin Reinecke's avatar
Martin Reinecke committed
497
498
499
    "s_data = s.to_global_data()\n",
    "m_data = HT(m).to_global_data()\n",
    "m_var_data = m_var.to_global_data()\n",
Martin Reinecke's avatar
Martin Reinecke committed
500
    "uncertainty = np.sqrt(m_var_data)\n",
Martin Reinecke's avatar
Martin Reinecke committed
501
    "d_data = d.to_global_data()\n",
Philipp Arras's avatar
Philipp Arras committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    "\n",
    "# Set lost data to NaN for proper plotting\n",
    "d_data[d_data == 0] = np.nan"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "fig = plt.figure(figsize=(15,10))\n",
Martin Reinecke's avatar
Martin Reinecke committed
518
519
520
521
522
    "plt.axvspan(l, h, facecolor='0.8',alpha=0.5)\n",
    "plt.fill_between(range(N_pixels), m_data - uncertainty, m_data + uncertainty, facecolor='0.5', alpha=0.5)\n",
    "plt.plot(s_data, 'r', label=\"Signal\", alpha=1, linewidth=3)\n",
    "plt.plot(d_data, 'k.', label=\"Data\")\n",
    "plt.plot(m_data, 'k', label=\"Reconstruction\", linewidth=3)\n",
Philipp Arras's avatar
Philipp Arras committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    "plt.title(\"Reconstruction of incomplete data\")\n",
    "plt.legend()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# 2d Example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Martin Reinecke's avatar
Martin Reinecke committed
541
   "metadata": {},
Philipp Arras's avatar
Philipp Arras committed
542
543
544
   "outputs": [],
   "source": [
    "N_pixels = 256      # Number of pixels\n",
Martin Reinecke's avatar
Martin Reinecke committed
545
    "sigma2 = 2.         # Noise variance\n",
Philipp Arras's avatar
Philipp Arras committed
546
547
    "\n",
    "def pow_spec(k):\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
548
    "    P0, k0, gamma = [.2, 2, 4]\n",
Martin Reinecke's avatar
Martin Reinecke committed
549
    "    return P0 * (1. + (k/k0)**2)**(-gamma/2)\n",
Philipp Arras's avatar
Philipp Arras committed
550
    "\n",
551
    "s_space = ift.RGSpace([N_pixels, N_pixels])"
Philipp Arras's avatar
Philipp Arras committed
552
553
554
555
556
557
558
559
560
561
562
563
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
564
    "h_space = s_space.get_default_codomain()\n",
Martin Reinecke's avatar
Martin Reinecke committed
565
    "HT = ift.HarmonicTransformOperator(h_space,s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
566
567
    "\n",
    "# Operators\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
568
569
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
    "N = ift.ScalingOperator(sigma2,s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
570
571
    "\n",
    "# Fields and data\n",
572
    "sh = Sh.draw_sample()\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
573
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
Philipp Arras's avatar
Philipp Arras committed
574
575
576
577
    "                      std=np.sqrt(sigma2), mean=0)\n",
    "\n",
    "# Lose some data\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
578
579
    "l = int(N_pixels * 0.33)\n",
    "h = int(N_pixels * 0.33 * 2)\n",
Philipp Arras's avatar
Philipp Arras committed
580
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
581
582
583
    "mask = np.full(s_space.shape, 1.)\n",
    "mask[l:h,l:h] = 0.\n",
    "mask = ift.Field.from_global_data(s_space, mask)\n",
Philipp Arras's avatar
Philipp Arras committed
584
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
585
    "R = ift.DiagonalOperator(mask)*HT\n",
Martin Reinecke's avatar
Martin Reinecke committed
586
587
588
    "n = n.to_global_data()\n",
    "n[l:h, l:h] = 0\n",
    "n = ift.Field.from_global_data(s_space, n)\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
589
590
    "curv = Curvature(R=R, N=N, Sh=Sh)\n",
    "D = curv.inverse\n",
Philipp Arras's avatar
Philipp Arras committed
591
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
592
    "d = R(sh) + n\n",
Philipp Arras's avatar
Philipp Arras committed
593
594
595
596
597
598
    "j = R.adjoint_times(N.inverse_times(d))\n",
    "\n",
    "# Run Wiener filter\n",
    "m = D(j)\n",
    "\n",
    "# Uncertainty\n",
Martin Reinecke's avatar
Martin Reinecke committed
599
    "m_mean, m_var = ift.probe_with_posterior_samples(curv, HT, 20)\n",
Philipp Arras's avatar
Philipp Arras committed
600
601
    "\n",
    "# Get data\n",
Martin Reinecke's avatar
Martin Reinecke committed
602
603
604
605
    "s_data = HT(sh).to_global_data()\n",
    "m_data = HT(m).to_global_data()\n",
    "m_var_data = m_var.to_global_data()\n",
    "d_data = d.to_global_data()\n",
Philipp Arras's avatar
Philipp Arras committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
    "uncertainty = np.sqrt(np.abs(m_var_data))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "cm = ['magma', 'inferno', 'plasma', 'viridis'][1]\n",
    "\n",
    "mi = np.min(s_data)\n",
    "ma = np.max(s_data)\n",
    "\n",
    "fig, axes = plt.subplots(1, 2, figsize=(15, 7))\n",
    "\n",
    "data = [s_data, d_data]\n",
    "caption = [\"Signal\", \"Data\"]\n",
    "\n",
    "for ax in axes.flat:\n",
    "    im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cm, vmin=mi,\n",
    "                   vmax=ma)\n",
    "    ax.set_title(caption.pop(0))\n",
    "\n",
    "fig.subplots_adjust(right=0.8)\n",
    "cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])\n",
    "fig.colorbar(im, cax=cbar_ax)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "mi = np.min(s_data)\n",
    "ma = np.max(s_data)\n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
652
    "fig, axes = plt.subplots(3, 2, figsize=(15, 22.5))\n",
653
    "sample = HT(curv.draw_sample(from_inverse=True)+m).to_global_data()\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
654
    "post_mean = (m_mean + HT(m)).to_global_data()\n",
Philipp Arras's avatar
Philipp Arras committed
655
    "\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
656
657
    "data = [s_data, m_data, post_mean, sample, s_data - m_data, uncertainty]\n",
    "caption = [\"Signal\", \"Reconstruction\", \"Posterior mean\", \"Sample\", \"Residuals\", \"Uncertainty Map\"]\n",
Philipp Arras's avatar
Philipp Arras committed
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
    "\n",
    "for ax in axes.flat:\n",
    "    im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cm, vmin=mi, vmax=ma)\n",
    "    ax.set_title(caption.pop(0))\n",
    "\n",
    "fig.subplots_adjust(right=0.8)\n",
    "cbar_ax = fig.add_axes([.85, 0.15, 0.05, 0.7])\n",
    "fig.colorbar(im, cax=cbar_ax)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Is the uncertainty map reliable?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
Martin Reinecke committed
689
    "precise = (np.abs(s_data-m_data) < uncertainty)\n",
Philipp Arras's avatar
Philipp Arras committed
690
691
    "print(\"Error within uncertainty map bounds: \" + str(np.sum(precise) * 100 / N_pixels**2) + \"%\")\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
692
    "plt.figure(figsize=(15,10))\n",
Philipp Arras's avatar
Philipp Arras committed
693
    "plt.imshow(precise.astype(float), cmap=\"brg\")\n",
Martin Reinecke's avatar
Martin Reinecke committed
694
    "plt.colorbar()"
Philipp Arras's avatar
Philipp Arras committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# Start Coding\n",
    "## NIFTy Repository + Installation guide\n",
    "\n",
    "https://gitlab.mpcdf.mpg.de/ift/NIFTy\n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
710
    "NIFTy v5 **more or less stable!**"
Philipp Arras's avatar
Philipp Arras committed
711
712
713
714
715
716
   ]
  }
 ],
 "metadata": {
  "celltoolbar": "Slideshow",
  "kernelspec": {
Martin Reinecke's avatar
Martin Reinecke committed
717
   "display_name": "Python 3",
Philipp Arras's avatar
Philipp Arras committed
718
   "language": "python",
Martin Reinecke's avatar
Martin Reinecke committed
719
   "name": "python3"
Philipp Arras's avatar
Philipp Arras committed
720
721
722
723
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
Martin Reinecke's avatar
Martin Reinecke committed
724
    "version": 3
Philipp Arras's avatar
Philipp Arras committed
725
726
727
728
729
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
Martin Reinecke's avatar
Martin Reinecke committed
730
731
   "pygments_lexer": "ipython3",
   "version": "3.6.6rc1"
Philipp Arras's avatar
Philipp Arras committed
732
733
734
735
736
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}