power_space.py 8.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Theo Steininger's avatar
Theo Steininger committed
18

19
20
import numpy as np

Martin Reinecke's avatar
Martin Reinecke committed
21
from ...spaces.space import Space
Martin Reinecke's avatar
Martin Reinecke committed
22
from functools import reduce
Theo Steininger's avatar
Theo Steininger committed
23
24


Theo Steininger's avatar
Theo Steininger committed
25
class PowerSpace(Space):
Theo Steininger's avatar
Theo Steininger committed
26
27
28
29
30
31
    """ NIFTY class for spaces of power spectra.

    Parameters
    ----------
    harmonic_partner : Space
        The harmonic Space of which this is the power space.
Martin Reinecke's avatar
Martin Reinecke committed
32
33
34
35
36
37
38
39
40
41
42
43
    binbounds: None, or tuple/array/list of float
        if None:
            There will be as many bins as there are distinct k-vector lengths
            in the harmonic partner space.
            The "binbounds" property of the PowerSpace will also be None.

        else:
            the bin bounds requested for this PowerSpace. The array
            must be sorted and strictly ascending. The first entry is the right
            boundary of the first bin, and the last entry is the left boundary
            of the last bin, i.e. thee will be len(binbounds)+1 bins in total,
            with the first and last bins reaching to -+infinity, respectively.
Theo Steininger's avatar
Theo Steininger committed
44
45
46
47
        (default : None)

    Attributes
    ----------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
48
    pindex : numpy.ndarray
49
50
        This holds the information which pixel of the harmonic partner gets
        mapped to which power bin
Theo Steininger's avatar
Theo Steininger committed
51
    kindex : numpy.ndarray
52
        Sorted array of all k-modes.
Theo Steininger's avatar
Theo Steininger committed
53
54
55
    rho : numpy.ndarray
        The amount of k-modes that get mapped to one power bin is given by
        rho.
56
57
58
    dim : np.int
        Total number of dimensionality, i.e. the number of pixels.
    harmonic : bool
Martin Reinecke's avatar
Martin Reinecke committed
59
        Always True for this space.
60
61
62
63
    total_volume : np.float
        The total volume of the space.
    shape : tuple of np.ints
        The shape of the space's data array.
Martin Reinecke's avatar
Martin Reinecke committed
64
65
66
    binbounds : tuple or None
        Boundaries between the power spectrum bins; None is used to indicate
        natural binning
Theo Steininger's avatar
Theo Steininger committed
67
68
69
70
71
72
73

    Notes
    -----
    A power space is the result of a projection of a harmonic space where
    k-modes of equal length get mapped to one power index.

    """
74

75
76
    _powerIndexCache = {}

77
78
    # ---Overwritten properties and methods---

Martin Reinecke's avatar
Martin Reinecke committed
79
    @staticmethod
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
80
    def linear_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
81
82
83
84
85
86
87
88
89
90
91
92
        """
        nbin: integer
            the number of bins
        first_bound, last_bound: float
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in linear scale) between these two.
        """
        nbin = int(nbin)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
93
94
        assert nbin >= 3, "nbin must be at least 3"
        return np.linspace(float(first_bound), float(last_bound), nbin-1)
Martin Reinecke's avatar
Martin Reinecke committed
95
96

    @staticmethod
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
97
    def logarithmic_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
98
99
100
101
102
103
104
105
106
107
108
109
        """
        nbin: integer
            the number of bins
        first_bound, last_bound: float
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in natural logarithmic scale)
        between these two.
        """
Martin Reinecke's avatar
Martin Reinecke committed
110
        nbin = int(nbin)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
111
        assert nbin >= 3, "nbin must be at least 3"
Martin Reinecke's avatar
Martin Reinecke committed
112
113
114
        return np.logspace(np.log(float(first_bound)),
                           np.log(float(last_bound)),
                           nbin-1, base=np.e)
Martin Reinecke's avatar
Martin Reinecke committed
115

116
117
118
119
120
121
122
123
    @staticmethod
    def useful_binbounds(space, logarithmic, nbin=None):
        if not (isinstance(space, Space) and space.harmonic):
            raise ValueError("first argument must be a harmonic space.")
        if logarithmic is None and nbin is None:
            return None
        nbin = None if nbin is None else int(nbin)
        logarithmic = bool(logarithmic)
124
        dists = space.get_unique_k_lengths()
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        if len(dists) < 3:
            raise ValueError("Space does not have enough unique k lengths")
        lbound = 0.5*(dists[0]+dists[1])
        rbound = 0.5*(dists[-2]+dists[-1])
        dists[0] = lbound
        dists[-1] = rbound
        if logarithmic:
            dists = np.log(dists)
        binsz_min = np.max(np.diff(dists))
        nbin_max = int((dists[-1]-dists[0])/binsz_min)+2
        if nbin is None:
            nbin = nbin_max
        assert nbin >= 3, "nbin must be at least 3"
        if nbin > nbin_max:
            raise ValueError("nbin is too large")
        if logarithmic:
            return PowerSpace.logarithmic_binbounds(nbin, lbound, rbound)
        else:
            return PowerSpace.linear_binbounds(nbin, lbound, rbound)

Martin Reinecke's avatar
Martin Reinecke committed
145
    def __init__(self, harmonic_partner, binbounds=None):
Martin Reinecke's avatar
Martin Reinecke committed
146
        super(PowerSpace, self).__init__()
147
        self._needed_for_hash += ['_harmonic_partner', '_binbounds']
148

Martin Reinecke's avatar
Martin Reinecke committed
149
150
151
        if not (isinstance(harmonic_partner, Space) and
                harmonic_partner.harmonic):
            raise ValueError("harmonic_partner must be a harmonic space.")
152
        self._harmonic_partner = harmonic_partner
153

Martin Reinecke's avatar
Martin Reinecke committed
154
155
        if binbounds is not None:
            binbounds = tuple(binbounds)
156

Martin Reinecke's avatar
Martin Reinecke committed
157
        key = (harmonic_partner, binbounds)
158
        if self._powerIndexCache.get(key) is None:
159
            k_length_array = self.harmonic_partner.get_k_length_array()
160
            temp_pindex = self._compute_pindex(
161
                                harmonic_partner=self.harmonic_partner,
162
                                k_length_array=k_length_array,
Martin Reinecke's avatar
Martin Reinecke committed
163
                                binbounds=binbounds)
Martin Reinecke's avatar
Martin Reinecke committed
164
            temp_rho = np.bincount(temp_pindex.ravel())
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
165
            assert not np.any(temp_rho == 0), "empty bins detected"
Martin Reinecke's avatar
Martin Reinecke committed
166
            temp_kindex = np.bincount(temp_pindex.ravel(),
167
                                      weights=k_length_array.ravel()) \
168
                / temp_rho
Martin Reinecke's avatar
Martin Reinecke committed
169
            self._powerIndexCache[key] = (binbounds,
170
171
172
173
174
175
176
                                          temp_pindex,
                                          temp_kindex,
                                          temp_rho)

        (self._binbounds, self._pindex, self._kindex, self._rho) = \
            self._powerIndexCache[key]

177
    @staticmethod
178
    def _compute_pindex(harmonic_partner, k_length_array, binbounds):
179
        if binbounds is None:
180
            tmp = harmonic_partner.get_unique_k_lengths()
181
            binbounds = 0.5*(tmp[:-1]+tmp[1:])
182
        return np.searchsorted(binbounds, k_length_array)
183

184
185
    # ---Mandatory properties and methods---

186
    def __repr__(self):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
187
188
        return ("PowerSpace(harmonic_partner=%r, binbounds=%r)"
                % (self.harmonic_partner, self._binbounds))
189

190
191
192
    @property
    def harmonic(self):
        return True
193

194
195
    @property
    def shape(self):
196
        return self.kindex.shape
197

198
199
200
201
202
203
204
    @property
    def dim(self):
        return self.shape[0]

    @property
    def total_volume(self):
        # every power-pixel has a volume of 1
Jait Dixit's avatar
Jait Dixit committed
205
        return float(reduce(lambda x, y: x*y, self.pindex.shape))
206

207
    def scalar_dvol(self):
208
209
        return None

210
    def dvol(self):
211
        # MR FIXME: this will probably change to 1 soon
212
        return np.asarray(self.rho, dtype=np.float64)
213

214
    def get_k_length_array(self):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
215
        return self.kindex.copy()
216

217
    def get_fft_smoothing_kernel_function(self, sigma):
218
        raise NotImplementedError(
219
            "There is no fft smoothing function for PowerSpace.")
220

221
222
223
    # ---Added properties and methods---

    @property
224
    def harmonic_partner(self):
Theo Steininger's avatar
Theo Steininger committed
225
        """ Returns the Space of which this is the power space.
226
227
        """
        return self._harmonic_partner
228
229

    @property
Martin Reinecke's avatar
Martin Reinecke committed
230
231
    def binbounds(self):
        return self._binbounds
232
233
234

    @property
    def pindex(self):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
235
        """ A numpy.ndarray having the shape of the harmonic partner
Theo Steininger's avatar
Theo Steininger committed
236
237
        space containing the indices of the power bin a pixel belongs to.
        """
238
239
240
241
        return self._pindex

    @property
    def kindex(self):
Theo Steininger's avatar
Theo Steininger committed
242
243
        """ Sorted array of all k-modes.
        """
244
245
246
247
        return self._kindex

    @property
    def rho(self):
Theo Steininger's avatar
Theo Steininger committed
248
249
        """Degeneracy factor of the individual k-vectors.
        """
250
        return self._rho