getting_started_3.py 3.59 KB
Newer Older
Jakob Knollmueller's avatar
Jakob Knollmueller committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
import nifty5 as ift
from nifty5.library.los_response import LOSResponse
from nifty5.library.amplitude_model import make_amplitude_model
from nifty5.library.smooth_sky import make_correlated_field
import numpy as np


def get_random_LOS(n_los):
    starts = list(np.random.uniform(0,1,(n_los,2)).T)
    ends = list(np.random.uniform(0,1,(n_los,2)).T)

    return starts, ends


if __name__ == '__main__':
    np.random.seed(41)
    position_space = ift.RGSpace([128,128])

Jakob Knollmueller's avatar
Jakob Knollmueller committed
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
    # Setting up an amplitude model
    A, amplitude_internals = make_amplitude_model(position_space,16, 1, 10, -4., 1, 0., 1.)

    # Building the model for a correlated signal
    harmonic_space = position_space.get_default_codomain()
    ht = ift.HarmonicTransformOperator(harmonic_space, position_space)
    power_space = A.value.domain[0]
    power_distributor = ift.PowerDistributor(harmonic_space, power_space)
    position = {}
    position['xi'] = ift.Field.from_random('normal', harmonic_space)
    position = ift.MultiField(position)

    xi = ift.Variable(position)['xi']
    Amp = power_distributor(A)
    correlated_field_h = Amp * xi
    correlated_field = ht(correlated_field_h)
    # # alternatively to the block above one can do:
    # correlated_field, _ = make_correlated_field(position_space,A)

    # apply some nonlinearity
    signal = ift.PointwisePositiveTanh(correlated_field)
    # Building the Line of Sight response
    LOS_starts, LOS_ends = get_random_LOS(1000)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
42
    R = LOSResponse(position_space, starts=LOS_starts, ends=LOS_ends)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
43 44

    # build signal response model and model likelihood
Jakob Knollmueller's avatar
Jakob Knollmueller committed
45
    signal_response = R(signal)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
46 47
    # specify noise
    data_space = R.target
Jakob Knollmueller's avatar
Jakob Knollmueller committed
48 49 50
    noise = .001
    N = ift.ScalingOperator(noise,data_space)

Jakob Knollmueller's avatar
Jakob Knollmueller committed
51 52 53

    # generate mock data
    MOCK_POSITION = ift.from_random('normal', signal.position.domain)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
54
    data = signal_response.at(MOCK_POSITION).value + N.draw_sample()
Jakob Knollmueller's avatar
Jakob Knollmueller committed
55 56 57 58 59

    # set up model likelihood
    likelihood = ift.GaussianEnergy(signal_response, mean=data, covariance=N)

    # set up minimization and inversion schemes
Jakob Knollmueller's avatar
Jakob Knollmueller committed
60 61
    ic_cg = ift.GradientNormController(iteration_limit=10)
    ic_sampling = ift.GradientNormController(iteration_limit=100)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
62 63
    ic_newton = ift.GradientNormController(name='Newton', iteration_limit=100)
    minimizer = ift.RelaxedNewton(ic_newton)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
64

Jakob Knollmueller's avatar
Jakob Knollmueller committed
65
    # build model Hamiltonian
Jakob Knollmueller's avatar
Jakob Knollmueller committed
66
    H = ift.Hamiltonian(likelihood,ic_cg,iteration_controller_sampling=ic_sampling)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
67

Jakob Knollmueller's avatar
Jakob Knollmueller committed
68 69
    INITIAL_POSITION = ift.from_random('normal',H.position.domain)
    position = INITIAL_POSITION
Jakob Knollmueller's avatar
Jakob Knollmueller committed
70

Jakob Knollmueller's avatar
Jakob Knollmueller committed
71 72 73 74
    ift.plot(signal.at(MOCK_POSITION).value,name='truth.pdf')
    ift.plot(R.adjoint_times(data),name='data.pdf')
    ift.plot([ A.at(MOCK_POSITION).value], name='power.pdf')

Jakob Knollmueller's avatar
Jakob Knollmueller committed
75 76
    # number of samples used to estimate the KL
    N_samples = 10
Jakob Knollmueller's avatar
Jakob Knollmueller committed
77 78 79 80 81 82 83 84 85 86 87
    for i in range(5):
        H = H.at(position)
        samples = [H.curvature.draw_sample(from_inverse=True) for _ in range(N_samples)]

        KL = ift.SampledKullbachLeiblerDivergence(H, samples, ic_cg)
        KL, convergence = minimizer(KL)
        position = KL.position

        ift.plot(signal.at(position).value,name='reconstruction.pdf')

        ift.plot([A.at(position).value, A.at(MOCK_POSITION).value],name='power.pdf')
Jakob Knollmueller's avatar
Jakob Knollmueller committed
88

Jakob Knollmueller's avatar
Jakob Knollmueller committed
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    avrg = 0.
    va = 0.
    powers = []
    for sample in samples:
        sam = signal.at(sample + position).value
        powers.append(A.at(sample+position).value)
        avrg += sam
        va += sam**2

    avrg /= len(samples)
    va /= len(samples)
    va -= avrg**2
    std = ift.sqrt(va)
    ift.plot(avrg, name='avrg.pdf')
    ift.plot(std, name='std.pdf')
    ift.plot([A.at(position).value, A.at(MOCK_POSITION).value]+powers, name='power.pdf')