power_space.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
theos's avatar
theos committed
18

theos's avatar
theos committed
19
20
import numpy as np

21
22
import d2o

23
24
from power_index_factory import PowerIndexFactory

25
from nifty.spaces.space import Space
theos's avatar
theos committed
26
27


Theo Steininger's avatar
Theo Steininger committed
28
class PowerSpace(Space):
Theo Steininger's avatar
Theo Steininger committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    """ NIFTY class for spaces of power spectra.

    Parameters
    ----------
    harmonic_partner : Space
        The harmonic Space of which this is the power space.
    distribution_strategy : str *optional*
        The distribution strategy used for the distributed_data_objects
        derived from this PowerSpace, e.g. the pindex.
        (default : 'not')
    logarithmic : bool *optional*
        True if logarithmic binning should be used (default : False).
    nbin : {int, None} *optional*
        The number of bins that should be used for power spectrum binning
        (default : None).
        if nbin == None, then nbin is set to the length of kindex.
    binbounds :  {list, array-like} *optional*
        Array-like inner boundaries of the used bins of the default
        indices.
        (default : None)
        if binbounds == None :
            Calculates the bounds from the kindex while applying the
            logarithmic and nbin keywords.

    Attributes
    ----------
    pindex : distributed_data_object
56
57
        This holds the information which pixel of the harmonic partner gets
        mapped to which power bin
Theo Steininger's avatar
Theo Steininger committed
58
    kindex : numpy.ndarray
59
        Sorted array of all k-modes.
Theo Steininger's avatar
Theo Steininger committed
60
    pundex : numpy.ndarray
61
        Flat index of the first occurence of a k-vector with length==kindex[n]
62
        in the k_array.
Theo Steininger's avatar
Theo Steininger committed
63
64
65
    rho : numpy.ndarray
        The amount of k-modes that get mapped to one power bin is given by
        rho.
66
67
68
69
70
71
72
73
    dim : np.int
        Total number of dimensionality, i.e. the number of pixels.
    harmonic : bool
        Specifies whether the space is a signal or harmonic space.
    total_volume : np.float
        The total volume of the space.
    shape : tuple of np.ints
        The shape of the space's data array.
74
75
76
    config : {logarithmic, nbin, binbounds}
        Dictionary storing the values for `logarithmic`, `nbin`, and
        `binbounds` that were used during initialization.
Theo Steininger's avatar
Theo Steininger committed
77
78
79
80
81
82
83

    Notes
    -----
    A power space is the result of a projection of a harmonic space where
    k-modes of equal length get mapped to one power index.

    """
84

85
86
    # ---Overwritten properties and methods---

87
    def __init__(self, harmonic_partner,
88
                 distribution_strategy='not',
89
                 logarithmic=False, nbin=None, binbounds=None):
Martin Reinecke's avatar
Martin Reinecke committed
90
        super(PowerSpace, self).__init__()
91
92
        self._ignore_for_hash += ['_pindex', '_kindex', '_rho', '_pundex',
                                  '_k_array']
93

94
        if not isinstance(harmonic_partner, Space):
95
            raise ValueError(
96
97
                "harmonic_partner must be a Space.")
        if not harmonic_partner.harmonic:
98
            raise ValueError(
99
100
                "harmonic_partner must be a harmonic space.")
        self._harmonic_partner = harmonic_partner
101

Jait Dixit's avatar
Jait Dixit committed
102
        power_index = PowerIndexFactory.get_power_index(
103
                        domain=self.harmonic_partner,
Jait Dixit's avatar
Jait Dixit committed
104
                        distribution_strategy=distribution_strategy,
105
                        logarithmic=logarithmic,
Jait Dixit's avatar
Jait Dixit committed
106
107
                        nbin=nbin,
                        binbounds=binbounds)
108

109
        self._config = power_index['config']
110
111
112
113

        self._pindex = power_index['pindex']
        self._kindex = power_index['kindex']
        self._rho = power_index['rho']
114
115
        self._pundex = power_index['pundex']
        self._k_array = power_index['k_array']
116

117
118
119
120
121
        if self.config['nbin'] is not None:
            if self.config['nbin'] > len(self.kindex):
                self.logger.warn("nbin was set to a value being larger than "
                                 "the length of kindex!")

Theo Steininger's avatar
Theo Steininger committed
122
    def pre_cast(self, x, axes):
Theo Steininger's avatar
Theo Steininger committed
123
124
125
126
127
128
        """ Casts power spectrum functions to discretized power spectra.

        This function takes an array or a function. If it is an array it does
        nothing, otherwise it interpretes the function as power spectrum and
        evaluates it at every k-mode.

129
130
131
        Parameters
        ----------
        x : {array-like, function array-like -> array-like}
Theo Steininger's avatar
Theo Steininger committed
132
133
134
135
136
137
            power spectrum given either in discretized form or implicitly as a
            function
        axes : tuple of ints
            Specifies the axes of x which correspond to this space. For
            explicifying the power spectrum function, this is ignored.

138
139
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
140
141
142
        array-like
            discretized power spectrum

143
        """
Theo Steininger's avatar
Theo Steininger committed
144

145
146
147
148
149
        if callable(x):
            return x(self.kindex)
        else:
            return x

150
151
152
153
154
    # ---Mandatory properties and methods---

    @property
    def harmonic(self):
        return True
155

156
157
    @property
    def shape(self):
158
        return self.kindex.shape
159

160
161
162
163
164
165
166
    @property
    def dim(self):
        return self.shape[0]

    @property
    def total_volume(self):
        # every power-pixel has a volume of 1
Jait Dixit's avatar
Jait Dixit committed
167
        return float(reduce(lambda x, y: x*y, self.pindex.shape))
168
169

    def copy(self):
170
        distribution_strategy = self.pindex.distribution_strategy
171
        return self.__class__(harmonic_partner=self.harmonic_partner,
172
                              distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
173
174
175
                              logarithmic=self.config["logarithmic"],
                              nbin=self.config["nbin"],
                              binbounds=self.config["binbounds"])
176

177
    def weight(self, x, power=1, axes=None, inplace=False):
Jait Dixit's avatar
Jait Dixit committed
178
179
        reshaper = [1, ] * len(x.shape)
        # we know len(axes) is always 1
180
181
        reshaper[axes[0]] = self.shape[0]

182
        weight = self.rho.reshape(reshaper)
183
        if power != 1:
184
            weight = weight ** np.float(power)
185
186
187
188
189
190

        if inplace:
            x *= weight
            result_x = x
        else:
            result_x = x*weight
191
192
193

        return result_x

194
    def get_distance_array(self, distribution_strategy):
195
        result = d2o.distributed_data_object(
Martin Reinecke's avatar
Martin Reinecke committed
196
                                self.kindex, dtype=np.float64,
197
198
                                distribution_strategy=distribution_strategy)
        return result
theos's avatar
theos committed
199

200
    def get_fft_smoothing_kernel_function(self, sigma):
201
        raise NotImplementedError(
202
            "There is no fft smoothing function for PowerSpace.")
theos's avatar
theos committed
203

204
205
206
    # ---Added properties and methods---

    @property
207
    def harmonic_partner(self):
Theo Steininger's avatar
Theo Steininger committed
208
        """ Returns the Space of which this is the power space.
209
210
        """
        return self._harmonic_partner
211
212

    @property
213
214
215
    def config(self):
        """ Returns the configuration which was used for `logarithmic`, `nbin`
        and `binbounds` during initialization.
216
        """
217
        return self._config
218
219
220

    @property
    def pindex(self):
221
        """ A distributed_data_object having the shape of the harmonic partner
Theo Steininger's avatar
Theo Steininger committed
222
223
        space containing the indices of the power bin a pixel belongs to.
        """
224
225
226
227
        return self._pindex

    @property
    def kindex(self):
Theo Steininger's avatar
Theo Steininger committed
228
229
        """ Sorted array of all k-modes.
        """
230
231
232
233
        return self._kindex

    @property
    def rho(self):
Theo Steininger's avatar
Theo Steininger committed
234
235
        """Degeneracy factor of the individual k-vectors.
        """
236
        return self._rho
237

238
239
    @property
    def pundex(self):
Theo Steininger's avatar
Theo Steininger committed
240
241
242
243
        """ An array for which the n-th entry gives the flat index of the
        first occurence of a k-vector with length==kindex[n] in the
        k_array.
        """
244
245
246
247
        return self._pundex

    @property
    def k_array(self):
Theo Steininger's avatar
Theo Steininger committed
248
249
250
        """ An array containing distances to the grid center (i.e. zero-mode)
        for every k-mode in the grid of the harmonic partner space.
        """
251
        return self._k_array
252
253
254
255

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Jait Dixit's avatar
Jait Dixit committed
256
        hdf5_group['kindex'] = self.kindex
257
258
        hdf5_group['rho'] = self.rho
        hdf5_group['pundex'] = self.pundex
Theo Steininger's avatar
Theo Steininger committed
259
        hdf5_group['logarithmic'] = self.config["logarithmic"]
Theo Steininger's avatar
Theo Steininger committed
260
        # Store nbin as string, since it can be None
261
262
        hdf5_group.attrs['nbin'] = str(self.config["nbin"])
        hdf5_group.attrs['binbounds'] = str(self.config["binbounds"])
263

264
        #MR FIXME: why not "return None" as happens everywhere else?
265
        return {
266
            'harmonic_partner': self.harmonic_partner,
267
268
269
270
271
            'pindex': self.pindex,
            'k_array': self.k_array
        }

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
272
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
273
274
275
276
        # make an empty PowerSpace object
        new_ps = EmptyPowerSpace()
        # reset class
        new_ps.__class__ = cls
Jait Dixit's avatar
Jait Dixit committed
277
        # call instructor so that classes are properly setup
Martin Reinecke's avatar
Martin Reinecke committed
278
        super(PowerSpace, new_ps).__init__()
Jait Dixit's avatar
Jait Dixit committed
279
        # set all values
Theo Steininger's avatar
Theo Steininger committed
280
281
        new_ps._harmonic_partner = repository.get('harmonic_partner',
                                                  hdf5_group)
Theo Steininger's avatar
Theo Steininger committed
282

283
284
285
286
        new_ps._config = {}
        new_ps._config['logarithmic'] = hdf5_group['logarithmic'][()]
        exec("new_ps._config['nbin'] = " + hdf5_group.attrs['nbin'])
        exec("new_ps._config['binbounds'] = " + hdf5_group.attrs['binbounds'])
Jait Dixit's avatar
Jait Dixit committed
287

Theo Steininger's avatar
Theo Steininger committed
288
        new_ps._pindex = repository.get('pindex', hdf5_group)
Jait Dixit's avatar
Jait Dixit committed
289
290
291
        new_ps._kindex = hdf5_group['kindex'][:]
        new_ps._rho = hdf5_group['rho'][:]
        new_ps._pundex = hdf5_group['pundex'][:]
Theo Steininger's avatar
Theo Steininger committed
292
        new_ps._k_array = repository.get('k_array', hdf5_group)
Jait Dixit's avatar
Jait Dixit committed
293
        new_ps._ignore_for_hash += ['_pindex', '_kindex', '_rho', '_pundex',
294
                                    '_k_array']
Jait Dixit's avatar
Jait Dixit committed
295
296
297
298
299
300
301

        return new_ps


class EmptyPowerSpace(PowerSpace):
    def __init__(self):
        pass