probing.py 2.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

Martin Reinecke's avatar
Martin Reinecke committed
18
from .field import Field
19

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
20

21
22
23
24
25
26
27
28
29
30
31
class StatCalculator(object):
    def __init__(self):
        self._count = 0

    def add(self, value):
        self._count += 1
        if self._count == 1:
            self._mean = 1.*value
            self._M2 = 0.*value
        else:
            delta = value - self._mean
32
            self._mean = self.mean + delta*(1./self._count)
33
            delta2 = value - self._mean
34
            self._M2 = self._M2 + delta*delta2
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

    @property
    def mean(self):
        if self._count == 0:
            raise RuntimeError
        return 1.*self._mean

    @property
    def var(self):
        if self._count < 2:
            raise RuntimeError
        return self._M2 * (1./(self._count-1))


def probe_with_posterior_samples(op, post_op, nprobes):
    sc = StatCalculator()
    for i in range(nprobes):
Martin Reinecke's avatar
Martin Reinecke committed
52
53
54
55
        if post_op is None:
            sc.add(op.draw_sample(from_inverse=True))
        else:
            sc.add(post_op(op.draw_sample(from_inverse=True)))
Martin Reinecke's avatar
Martin Reinecke committed
56
57
58

    if nprobes == 1:
        return sc.mean, None
59
    return sc.mean, sc.var
Martin Reinecke's avatar
Martin Reinecke committed
60
61
62
63
64
65
66
67
68


def probe_diagonal(op, nprobes, random_type="pm1"):
    sc = StatCalculator()
    for i in range(nprobes):
        input = Field.from_random(random_type, op.domain)
        output = op(input)
        sc.add(output.conjugate()*input)
    return sc.mean