nifty_lm.py 78.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
#
# Copyright (C) 2015 Max-Planck-Society
#
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  lm
    ..                               /______/

    NIFTY submodule for grids on the two-sphere.

"""
from __future__ import division
35

Marco Selig's avatar
Marco Selig committed
36
37
38
39
40
import os
import numpy as np
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf
41
42
43
44

from nifty.nifty_core import space,\
                             point_space,\
                             field
45
from nifty.keepers import about,\
46
47
                    global_configuration as gc,\
                    global_dependency_injector as gdi
Ultimanet's avatar
Ultimanet committed
48
from nifty.nifty_paradict import lm_space_paradict,\
49
50
51
52
                                 gl_space_paradict,\
                                 hp_space_paradict
from nifty.nifty_power_indices import lm_power_indices

csongor's avatar
csongor committed
53
from nifty.nifty_mpi_data import distributed_data_object
54
from nifty.nifty_mpi_data import STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
55

Ultimanet's avatar
Ultimanet committed
56
from nifty.nifty_random import random
57

Ultima's avatar
Ultima committed
58
59
gl = gdi.get('libsharp_wrapper_gl')
hp = gdi.get('healpy')
60

61
62
63
LM_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
GL_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
HP_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
Marco Selig's avatar
Marco Selig committed
64
65


66
class lm_space(point_space):
Marco Selig's avatar
Marco Selig committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

        Parameters
        ----------
        lmax : int
            Maximum :math:`\ell`-value up to which the spherical harmonics
            coefficients are to be used.
        mmax : int, *optional*
            Maximum :math:`m`-value up to which the spherical harmonics
            coefficients are to be used (default: `lmax`).
86
        dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
            Data type of the field values (default: numpy.complex128).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

        Notes
        -----
        Hermitian symmetry, i.e. :math:`a_{\ell -m} = \overline{a}_{\ell m}` is
        always assumed for the spherical harmonics components, i.e. only fields
        on the two-sphere with real-valued representations in position space
        can be handled.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `lmax` and
            `mmax`.
116
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
117
118
119
120
121
122
123
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that an :py:class:`lm_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`lm_space`, which is always 1.
    """
124
125

    def __init__(self, lmax, mmax=None, dtype=np.dtype('complex128'),
csongor's avatar
csongor committed
126
                 datamodel='not', comm=gc['default_comm']):
Marco Selig's avatar
Marco Selig committed
127
128
129
130
131
132
133
134
135
136
137
        """
            Sets the attributes for an lm_space class instance.

            Parameters
            ----------
            lmax : int
                Maximum :math:`\ell`-value up to which the spherical harmonics
                coefficients are to be used.
            mmax : int, *optional*
                Maximum :math:`m`-value up to which the spherical harmonics
                coefficients are to be used (default: `lmax`).
138
            dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
                Data type of the field values (default: numpy.complex128).

            Returns
            -------
            None.

            Raises
            ------
            ImportError
                If neither the libsharp_wrapper_gl nor the healpy module are
                available.
            ValueError
                If input `nside` is invaild.

        """
154

155
        # check imports
Ultima's avatar
Ultima committed
156
        if not gc['use_libsharp'] and not gc['use_healpy']:
157
            raise ImportError(about._errors.cstring(
Ultima's avatar
Ultima committed
158
                "ERROR: neither libsharp_wrapper_gl nor healpy activated."))
159

Ultima's avatar
Ultima committed
160
161
        self._cache_dict = {'check_codomain': {}}

162
        self.paradict = lm_space_paradict(lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
163

164
165
166
        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('complex64'), np.dtype('complex128')]:
theos's avatar
theos committed
167
            about.warnings.cprint("WARNING: data type set to complex128.")
168
169
            dtype = np.dtype('complex128')
        self.dtype = dtype
170

171
        # set datamodel
csongor's avatar
csongor committed
172
        if datamodel not in ['not']:
theos's avatar
theos committed
173
174
175
176
177
178
179
            about.warnings.cprint(
                "WARNING: %s is not a recommended datamodel for lm_space."
                % datamodel)
        if datamodel not in LM_DISTRIBUTION_STRATEGIES:
            raise ValueError(about._errors.cstring(
                "ERROR: %s is not a valid datamodel" % datamodel))

180
        self.datamodel = datamodel
181

Marco Selig's avatar
Marco Selig committed
182
        self.discrete = True
183
        self.harmonic = True
184
        self.distances = (np.float(1),)
185
        self.comm = self._parse_comm(comm)
186
187
188
189
190
191
192

        self.power_indices = lm_power_indices(
                    lmax=self.paradict['lmax'],
                    dim=self.get_dim(),
                    comm=self.comm,
                    datamodel=self.datamodel,
                    allowed_distribution_strategies=LM_DISTRIBUTION_STRATEGIES)
Marco Selig's avatar
Marco Selig committed
193

194
195
    @property
    def para(self):
196
        temp = np.array([self.paradict['lmax'],
197
198
                         self.paradict['mmax']], dtype=int)
        return temp
199

200
201
202
203
204
    @para.setter
    def para(self, x):
        self.paradict['lmax'] = x[0]
        self.paradict['mmax'] = x[1]

Ultima's avatar
Ultima committed
205
206
207
    def __hash__(self):
        result_hash = 0
        for (key, item) in vars(self).items():
Ultima's avatar
Ultima committed
208
            if key in ['_cache_dict', 'power_indices']:
Ultima's avatar
Ultima committed
209
210
211
212
                continue
            result_hash ^= item.__hash__() * hash(key)
        return result_hash

Ultima's avatar
Ultima committed
213
214
215
216
217
218
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: tuple(x) if
                  isinstance(x, np.ndarray) else x)(ii[1])))
                for ii in vars(self).iteritems()
Ultima's avatar
Ultima committed
219
                if ii[0] not in ['_cache_dict', 'power_indices', 'comm']]
Ultima's avatar
Ultima committed
220
221
222
223
        temp.append(('comm', self.comm.__hash__()))
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))

224
    def copy(self):
225
226
227
228
        return lm_space(lmax=self.paradict['lmax'],
                        mmax=self.paradict['mmax'],
                        dtype=self.dtype)

229
    def get_shape(self):
Ultima's avatar
Ultima committed
230
        lmax = self.paradict['lmax']
Ultima's avatar
Ultima committed
231
232
        mmax = self.paradict['mmax']
        return (np.int((mmax + 1) * (lmax + 1) - ((mmax + 1) * mmax) // 2),)
233
234

    def get_dof(self, split=False):
Marco Selig's avatar
Marco Selig committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        """
            Computes the number of degrees of freedom of the space, taking into
            account symmetry constraints and complex-valuedness.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.

            Notes
            -----
            The number of degrees of freedom is reduced due to the hermitian
            symmetry, which is assumed for the spherical harmonics components.
        """
249
250
        # dof = 2*dim-(lmax+1) = (lmax+1)*(2*mmax+1)*(mmax+1)*mmax
        lmax = self.paradict['lmax']
Ultima's avatar
Ultima committed
251
        mmax = self.paradict['mmax']
252
253
254
255
256
        dof = np.int((lmax + 1) * (2 * mmax + 1) - (mmax + 1) * mmax)
        if split:
            return (dof, )
        else:
            return dof
Marco Selig's avatar
Marco Selig committed
257

258
    def get_meta_volume(self, split=False):
Marco Selig's avatar
Marco Selig committed
259
        """
260
            Calculates the meta volumes.
Marco Selig's avatar
Marco Selig committed
261

262
263
264
265
            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.
Marco Selig's avatar
Marco Selig committed
266
267
268

            Parameters
            ----------
269
270
271
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).
Marco Selig's avatar
Marco Selig committed
272
273
274

            Returns
            -------
275
276
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.
Marco Selig's avatar
Marco Selig committed
277

278
279
280
281
282
            Notes
            -----
            The spherical harmonics components with :math:`m=0` have meta
            volume 1, the ones with :math:`m>0` have meta volume 2, sinnce they
            each determine another component with negative :math:`m`.
Marco Selig's avatar
Marco Selig committed
283
        """
284
285
286
287
288
289
        if not split:
            return np.float(self.get_dof())
        else:
            mol = self.cast(1, dtype=np.float)
            mol[self.paradict['lmax'] + 1:] = 2  # redundant: (l,m) and (l,-m)
            return mol
Marco Selig's avatar
Marco Selig committed
290

theos's avatar
theos committed
291
292
293
294
295
296
    def _cast_to_d2o(self, x, dtype=None, **kwargs):
        casted_x = super(lm_space, self)._cast_to_d2o(x=x,
                                                      dtype=dtype,
                                                      **kwargs)
        complexity_mask = casted_x[:self.paradict['lmax']+1].iscomplex()
        if complexity_mask.any():
Ultima's avatar
Ultima committed
297
            about.warnings.cprint("WARNING: Taking the absolute values for " +
298
                                  "all complex entries where lmax==0")
theos's avatar
theos committed
299
            casted_x[complexity_mask] = abs(casted_x[complexity_mask])
300
301
        return casted_x

302
    # TODO: Extend to binning/log
303
304
305
306
307
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['lmax'] + 1
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
308
309
310
311
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)

Ultima's avatar
Ultima committed
312
    def _check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        """
            Checks whether a given codomain is compatible to the
            :py:class:`lm_space` or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`lm_space`,
            :py:class:`gl_space`, and :py:class:`hp_space`.
        """
332
333
        if codomain is None:
            return False
334

335
336
337
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring(
                "ERROR: The given codomain must be a nifty lm_space."))
Marco Selig's avatar
Marco Selig committed
338

339
340
341
        if self.comm is not codomain.comm:
            return False

342
343
344
        if self.datamodel is not codomain.datamodel:
            return False

345
346
347
        elif isinstance(codomain, gl_space):
            # lmax==mmax
            # nlat==lmax+1
348
            # nlon==2*lmax+1
349
350
351
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (codomain.paradict['nlat'] == self.paradict['lmax']+1) and
                    (codomain.paradict['nlon'] == 2*self.paradict['lmax']+1)):
Marco Selig's avatar
Marco Selig committed
352
353
                return True

354
355
356
357
358
        elif isinstance(codomain, hp_space):
            # lmax==mmax
            # 3*nside-1==lmax
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (3*codomain.paradict['nside']-1 == self.paradict['lmax'])):
Marco Selig's avatar
Marco Selig committed
359
360
361
362
                return True

        return False

363
    def get_codomain(self, coname=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  a pixelization of the two-sphere.

            Parameters
            ----------
            coname : string, *optional*
                String specifying a desired codomain (default: None).

            Returns
            -------
            codomain : nifty.space
                A compatible codomain.

            Notes
            -----
            Possible arguments for `coname` are ``'gl'`` in which case a Gauss-
            Legendre pixelization [#]_ of the sphere is generated, and ``'hp'``
            in which case a HEALPix pixelization [#]_ is generated.

            References
            ----------
            .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
                   High-Resolution Discretization and Fast Analysis of Data
                   Distributed on the Sphere", *ApJ* 622..759G.
389
390
            .. [#] M. Reinecke and D. Sverre Seljebotn, 2013,
                   "Libsharp - spherical
Marco Selig's avatar
Marco Selig committed
391
392
393
394
                   harmonic transforms revisited";
                   `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        """
395
396
397
398
399
        if coname == 'gl' or (coname is None and gc['lm2gl']):
            if self.dtype == np.dtype('complex64'):
                new_dtype = np.float32
            elif self.dtype == np.dtype('complex128'):
                new_dtype = np.float64
Marco Selig's avatar
Marco Selig committed
400
            else:
401
402
403
                raise NotImplementedError
            nlat = self.paradict['lmax'] + 1
            nlon = self.paradict['lmax'] * 2 + 1
404
405
406
407
            return gl_space(nlat=nlat, nlon=nlon, dtype=new_dtype,
                            datamodel=self.datamodel,
                            comm=self.comm)

408
409
        elif coname == 'hp' or (coname is None and not gc['lm2gl']):
            nside = (self.paradict['lmax']+1) // 3
410
411
412
413
            return hp_space(nside=nside,
                            datamodel=self.datamodel,
                            comm=self.comm)

Marco Selig's avatar
Marco Selig committed
414
        else:
415
            raise ValueError(about._errors.cstring(
416
417
418
419
420
421
422
423
424
425
426
427
                "ERROR: unsupported or incompatible codomain '"+coname+"'."))

    def get_random_values(self, **kwargs):
        """
            Generates random field values according to the specifications given
            by the parameters, taking into account complex-valuedness and
            hermitian symmetry.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.
Marco Selig's avatar
Marco Selig committed
428

429
430
431
432
433
434
            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:
Marco Selig's avatar
Marco Selig committed
435

436
437
438
439
440
441
                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
                - "gau" (normal distribution with zero-mean and a given
                    standard
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)
Marco Selig's avatar
Marco Selig committed
442

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
            spec : {scalar, list, numpy.array, nifty.field, function},
                *optional*
                Power spectrum (default: 1).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
        arg = random.parse_arguments(self, **kwargs)

        if arg is None:
460
            x = 0
461

Ultima's avatar
Ultima committed
462
        elif arg['random'] == "pm1":
463
464
            x = random.pm1(dtype=self.dtype, shape=self.get_shape())

Ultima's avatar
Ultima committed
465
        elif arg['random'] == "gau":
466
467
            x = random.gau(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
468
469
                           mean=arg['mean'],
                           std=arg['std'])
470

Ultima's avatar
Ultima committed
471
        elif arg['random'] == "syn":
472
473
474
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
            if self.dtype == np.dtype('complex64'):
Ultima's avatar
Ultima committed
475
476
                if gc['use_libsharp']:
                    x = gl.synalm_f(arg['spec'], lmax=lmax, mmax=mmax)
477
                else:
Ultima's avatar
Ultima committed
478
                    x = hp.synalm(arg['spec'].astype(np.complex128),
479
480
                                  lmax=lmax, mmax=mmax).astype(np.complex64)
            else:
Ultima's avatar
Ultima committed
481
482
                if gc['use_healpy']:
                    x = hp.synalm(arg['spec'], lmax=lmax, mmax=mmax)
483
                else:
Ultima's avatar
Ultima committed
484
                    x = gl.synalm(arg['spec'], lmax=lmax, mmax=mmax)
485

Ultima's avatar
Ultima committed
486
        elif arg['random'] == "uni":
487
488
            x = random.uni(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
489
490
                           vmin=arg['vmin'],
                           vmax=arg['vmax'])
491
492
493

        else:
            raise KeyError(about._errors.cstring(
Ultima's avatar
Ultima committed
494
                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
Marco Selig's avatar
Marco Selig committed
495

496
497
        return self.cast(x)

498
    def calc_dot(self, x, y):
Marco Selig's avatar
Marco Selig committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        """
            Computes the discrete inner product of two given arrays of field
            values.

            Parameters
            ----------
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array

            Returns
            -------
            dot : scalar
                Inner product of the two arrays.
        """
515
516
517
        x = self.cast(x)
        y = self.cast(y)

Ultima's avatar
Ultima committed
518
        if gc['use_libsharp']:
519
520
521
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
            if self.dtype == np.dtype('complex64'):
csongor's avatar
csongor committed
522
                return self.cast(gl.dotlm_f(x, y, lmax=lmax, mmax=mmax))
Marco Selig's avatar
Marco Selig committed
523
            else:
csongor's avatar
csongor committed
524
                return self.cast(gl.dotlm(x, y, lmax=lmax, mmax=mmax))
Marco Selig's avatar
Marco Selig committed
525
        else:
526
            return self._dotlm(x, y)
Ultima's avatar
Ultima committed
527

528
529
530
531
532
533
534
    def _dotlm(self, x, y):
        lmax = self.paradict['lmax']
        dot = np.sum(x.real[:lmax + 1] * y.real[:lmax + 1])
        dot += 2 * np.sum(x.real[lmax + 1:] * y.real[lmax + 1:])
        dot += 2 * np.sum(x.imag[lmax + 1:] * y.imag[lmax + 1:])
        return dot

535
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
536
537
538
539
540
541
542
543
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
544
                codomain space to which the transformation shall map
Marco Selig's avatar
Marco Selig committed
545
546
547
548
549
550
551
                (default: self).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array
        """
552
        x = self.cast(x)
Marco Selig's avatar
Marco Selig committed
553

554
555
        if codomain is None:
            codomain = self.get_codomain()
Marco Selig's avatar
Marco Selig committed
556

557
558
559
560
        # Check if the given codomain is suitable for the transformation
        if not self.check_codomain(codomain):
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported codomain."))
Marco Selig's avatar
Marco Selig committed
561

562
563
564
565
566
        if isinstance(codomain, gl_space):
            nlat = codomain.paradict['nlat']
            nlon = codomain.paradict['nlon']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
Marco Selig's avatar
Marco Selig committed
567

568
            # transform
569
            if self.dtype == np.dtype('complex64'):
csongor's avatar
csongor committed
570
571
                Tx = gl.alm2map_f(np.array(x), nlat=nlat, nlon=nlon,
                                  lmax=lmax, mmax=mmax, cl=False)
Marco Selig's avatar
Marco Selig committed
572
            else:
csongor's avatar
csongor committed
573
574
                Tx = gl.alm2map(np.array(x), nlat=nlat, nlon=nlon,
                                lmax=lmax, mmax=mmax, cl=False)
575
576
            # re-weight if discrete
            if codomain.discrete:
577
                Tx = codomain.calc_weight(Tx, power=0.5)
Marco Selig's avatar
Marco Selig committed
578

579
580
581
582
583
        elif isinstance(codomain, hp_space):
            nside = codomain.paradict['nside']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']

584
            # transform
csongor's avatar
csongor committed
585
            Tx = hp.alm2map(np.array(x).astype(np.complex128), nside, lmax=lmax,
586
                            mmax=mmax, pixwin=False, fwhm=0.0, sigma=None,
csongor's avatar
csongor committed
587
                            pol=True, inplace=False)
588
            # re-weight if discrete
Marco Selig's avatar
Marco Selig committed
589
            if(codomain.discrete):
590
                Tx = codomain.calc_weight(Tx, power=0.5)
Marco Selig's avatar
Marco Selig committed
591
592

        else:
593
594
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported transformation."))
Marco Selig's avatar
Marco Selig committed
595

csongor's avatar
csongor committed
596
        return codomain.cast(Tx.astype(codomain.dtype))
Marco Selig's avatar
Marco Selig committed
597

598
    def calc_smooth(self, x, sigma=0, **kwargs):
Marco Selig's avatar
Marco Selig committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel in position space.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space; for testing: a sigma of -1 will be
                reset to a reasonable value (default: 0).

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.
        """
617
        x = self.cast(x)
618
        # check sigma
619
        if sigma == 0:
Ultima's avatar
Ultima committed
620
            return self.unary_operation(x, op='copy')
621
        elif sigma == -1:
Marco Selig's avatar
Marco Selig committed
622
            about.infos.cprint("INFO: invalid sigma reset.")
623
624
            sigma = np.sqrt(2) * np.pi / (self.paradict['lmax'] + 1)
        elif sigma < 0:
Marco Selig's avatar
Marco Selig committed
625
            raise ValueError(about._errors.cstring("ERROR: invalid sigma."))
Ultima's avatar
Ultima committed
626
        if gc['use_healpy']:
csongor's avatar
csongor committed
627
            return self.cast(hp.smoothalm(x, fwhm=0.0, sigma=sigma,
628
                                pol=True, mmax=self.paradict['mmax'],
629
                                verbose=False, inplace=False))
Marco Selig's avatar
Marco Selig committed
630
        else:
csongor's avatar
csongor committed
631
            return self.cast(gl.smoothalm(x, lmax=self.paradict['lmax'],
632
                                mmax=self.paradict['mmax'],
633
                                fwhm=0.0, sigma=sigma, overwrite=False))
Marco Selig's avatar
Marco Selig committed
634

635
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.
        """
650
651
652
653
        x = self.cast(x)
        lmax = self.paradict['lmax']
        mmax = self.paradict['mmax']

654
        # power spectrum
655
        if self.dtype == np.dtype('complex64'):
Ultima's avatar
Ultima committed
656
            if gc['use_libsharp']:
csongor's avatar
csongor committed
657
                return gl.anaalm_f(np.array(x), lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
658
            else:
csongor's avatar
csongor committed
659
                return hp.alm2cl(np.array(x).astype(np.complex128), alms2=None,
660
                                 lmax=lmax, mmax=mmax, lmax_out=lmax,
csongor's avatar
csongor committed
661
                                 nspec=None).astype(np.float32)
Marco Selig's avatar
Marco Selig committed
662
        else:
Ultima's avatar
Ultima committed
663
            if gc['use_healpy']:
csongor's avatar
csongor committed
664
665
                return hp.alm2cl(np.array(x), alms2=None, lmax=lmax, mmax=mmax,
                                 lmax_out=lmax, nspec=None)
Marco Selig's avatar
Marco Selig committed
666
            else:
csongor's avatar
csongor committed
667
                return gl.anaalm(np.array(x), lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
668

669
670
671
    def get_plot(self, x, title="", vmin=None, vmax=None, power=True,
                 norm=None, cmap=None, cbar=True, other=None, legend=False,
                 mono=True, **kwargs):
Marco Selig's avatar
Marco Selig committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: True).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).

        """
716
        if(not pl.isinteractive())and(not bool(kwargs.get("save", False))):
Marco Selig's avatar
Marco Selig committed
717
718
719
720
721
            about.warnings.cprint("WARNING: interactive mode off.")

        if(power):
            x = self.calc_power(x)

722
723
724
            fig = pl.figure(num=None, figsize=(6.4, 4.8), dpi=None, facecolor="none",
                            edgecolor="none", frameon=False, FigureClass=pl.Figure)
            ax0 = fig.add_axes([0.12, 0.12, 0.82, 0.76])
Marco Selig's avatar
Marco Selig committed
725

726
            xaxes = np.arange(self.para[0] + 1, dtype=np.int)
Marco Selig's avatar
Marco Selig committed
727
            if(vmin is None):
728
729
                vmin = np.min(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
Marco Selig's avatar
Marco Selig committed
730
            if(vmax is None):
731
732
733
734
                vmax = np.max(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
            ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * x)[1:], color=[0.0,
                                                                            0.5, 0.0], label="graph 0", linestyle='-', linewidth=2.0, zorder=1)
Marco Selig's avatar
Marco Selig committed
735
            if(mono):
736
737
                ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), x[0], s=20, color=[0.0, 0.5, 0.0], marker='o',
                            cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=1)
Marco Selig's avatar
Marco Selig committed
738
739

            if(other is not None):
740
                if(isinstance(other, tuple)):
Marco Selig's avatar
Marco Selig committed
741
742
                    other = list(other)
                    for ii in xrange(len(other)):
743
                        if(isinstance(other[ii], field)):
Marco Selig's avatar
Marco Selig committed
744
745
746
                            other[ii] = other[ii].power(**kwargs)
                        else:
                            other[ii] = self.enforce_power(other[ii])
747
                elif(isinstance(other, field)):
Marco Selig's avatar
Marco Selig committed
748
749
750
                    other = [other.power(**kwargs)]
                else:
                    other = [self.enforce_power(other)]
751
                imax = max(1, len(other) - 1)
Marco Selig's avatar
Marco Selig committed
752
                for ii in xrange(len(other)):
753
754
                    ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * other[ii])[1:], color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)
                                                                                            ** 2, max(0.0, 1.0 - (2 * (ii - imax) / imax)**2)], label="graph " + str(ii + 1), linestyle='-', linewidth=1.0, zorder=-ii)
Marco Selig's avatar
Marco Selig committed
755
                    if(mono):
756
757
                        ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), other[ii][0], s=20, color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)**2, max(
                            0.0, 1.0 - (2 * (ii - imax) / imax)**2)], marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=-ii)
Marco Selig's avatar
Marco Selig committed
758
759
760
                if(legend):
                    ax0.legend()

761
            ax0.set_xlim(xaxes[1], xaxes[-1])
Marco Selig's avatar
Marco Selig committed
762
            ax0.set_xlabel(r"$\ell$")
763
            ax0.set_ylim(vmin, vmax)
Marco Selig's avatar
Marco Selig committed
764
765
766
767
            ax0.set_ylabel(r"$\ell(2\ell+1) C_\ell$")
            ax0.set_title(title)

        else:
Ultima's avatar
Ultima committed
768
            x = self.cast(x)
Marco Selig's avatar
Marco Selig committed
769
770
771
            if(np.iscomplexobj(x)):
                if(title):
                    title += " "
772
773
774
775
776
777
                if(bool(kwargs.get("save", False))):
                    save_ = os.path.splitext(
                        os.path.basename(str(kwargs.get("save"))))
                    kwargs.update(save=save_[0] + "_absolute" + save_[1])
                self.get_plot(np.absolute(x), title=title + "(absolute)", vmin=vmin, vmax=vmax,
                              power=False, norm=norm, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)
Marco Selig's avatar
Marco Selig committed
778
779
780
781
#                self.get_plot(np.real(x),title=title+"(real part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
#                self.get_plot(np.imag(x),title=title+"(imaginary part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
                if(cmap is None):
                    cmap = pl.cm.hsv_r
782
783
784
785
786
                if(bool(kwargs.get("save", False))):
                    kwargs.update(save=save_[0] + "_phase" + save_[1])
                self.get_plot(np.angle(x, deg=False), title=title + "(phase)", vmin=-3.1416, vmax=3.1416, power=False,
                              norm=None, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)  # values in [-pi,pi]
                return None  # leave method
Marco Selig's avatar
Marco Selig committed
787
788
            else:
                if(vmin is None):
789
                    vmin = np.min(x, axis=None, out=None)
Marco Selig's avatar
Marco Selig committed
790
                if(vmax is None):
791
792
793
794
795
796
797
798
799
800
                    vmax = np.max(x, axis=None, out=None)
                if(norm == "log")and(vmin <= 0):
                    raise ValueError(about._errors.cstring(
                        "ERROR: nonpositive value(s)."))

                # not a number
                xmesh = np.nan * \
                    np.empty(self.para[::-1] + 1, dtype=np.float16, order='C')
                xmesh[4, 1] = None
                xmesh[1, 4] = None
Marco Selig's avatar
Marco Selig committed
801
                lm = 0
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
                for mm in xrange(self.para[1] + 1):
                    xmesh[mm][mm:] = x[lm:lm + self.para[0] + 1 - mm]
                    lm += self.para[0] + 1 - mm

                s_ = np.array([1, self.para[1] / self.para[0]
                               * (1.0 + 0.159 * bool(cbar))])
                fig = pl.figure(num=None, figsize=(
                    6.4 * s_[0], 6.4 * s_[1]), dpi=None, facecolor="none", edgecolor="none", frameon=False, FigureClass=pl.Figure)
                ax0 = fig.add_axes(
                    [0.06 / s_[0], 0.06 / s_[1], 1.0 - 0.12 / s_[0], 1.0 - 0.12 / s_[1]])
                ax0.set_axis_bgcolor([0.0, 0.0, 0.0, 0.0])

                xaxes = np.arange(self.para[0] + 2, dtype=np.int) - 0.5
                yaxes = np.arange(self.para[1] + 2, dtype=np.int) - 0.5
                if(norm == "log"):
                    n_ = ln(vmin=vmin, vmax=vmax)
Marco Selig's avatar
Marco Selig committed
818
819
                else:
                    n_ = None
820
821
822
823
                sub = ax0.pcolormesh(xaxes, yaxes, np.ma.masked_where(np.isnan(
                    xmesh), xmesh), cmap=cmap, norm=n_, vmin=vmin, vmax=vmax, clim=(vmin, vmax))
                ax0.set_xlim(xaxes[0], xaxes[-1])
                ax0.set_xticks([0], minor=False)
Marco Selig's avatar
Marco Selig committed
824
                ax0.set_xlabel(r"$\ell$")
825
826
                ax0.set_ylim(yaxes[0], yaxes[-1])
                ax0.set_yticks([0], minor=False)
Marco Selig's avatar
Marco Selig committed
827
828
829
                ax0.set_ylabel(r"$m$")
                ax0.set_aspect("equal")
                if(cbar):
830
831
832
833
834
835
                    if(norm == "log"):
                        f_ = lf(10, labelOnlyBase=False)
                        b_ = sub.norm.inverse(
                            np.linspace(0, 1, sub.cmap.N + 1))
                        v_ = np.linspace(
                            sub.norm.vmin, sub.norm.vmax, sub.cmap.N)
Marco Selig's avatar
Marco Selig committed
836
837
838
839
                    else:
                        f_ = None
                        b_ = None
                        v_ = None
840
841
                    fig.colorbar(sub, ax=ax0, orientation="horizontal", fraction=0.1, pad=0.05, shrink=0.75, aspect=20, ticks=[
                                 vmin, vmax], format=f_, drawedges=False, boundaries=b_, values=v_)
Marco Selig's avatar
Marco Selig committed
842
843
                ax0.set_title(title)

844
845
846
        if(bool(kwargs.get("save", False))):
            fig.savefig(str(kwargs.get("save")), dpi=None, facecolor="none", edgecolor="none", orientation="portrait",
                        papertype=None, format=None, transparent=False, bbox_inches=None, pad_inches=0.1)
Marco Selig's avatar
Marco Selig committed
847
848
849
850
            pl.close(fig)
        else:
            fig.canvas.draw()

851
852
853
854
855
856
857
858
    def getlm(self):  # > compute all (l,m)
        index = np.arange(self.get_dim())
        n = 2 * self.paradict['lmax'] + 1
        m = np.ceil(
            (n - np.sqrt(n**2 - 8 * (index - self.paradict['lmax']))) / 2
                    ).astype(np.int)
        l = index - self.paradict['lmax'] * m + m * (m - 1) // 2
        return l, m
Marco Selig's avatar
Marco Selig committed
859
860


861
class gl_space(point_space):
Marco Selig's avatar
Marco Selig committed
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
    """
        ..                 __
        ..               /  /
        ..     ____ __  /  /
        ..   /   _   / /  /
        ..  /  /_/  / /  /_
        ..  \___   /  \___/  space class
        .. /______/

        NIFTY subclass for Gauss-Legendre pixelizations [#]_ of the two-sphere.

        Parameters
        ----------
        nlat : int
            Number of latitudinal bins, or rings.
        nlon : int, *optional*
            Number of longitudinal bins (default: ``2*nlat - 1``).
879
        dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
880
881
882
883
884
885
886
887
888
889
            Data type of the field values (default: numpy.float64).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        lm_space : A class for spherical harmonic components.

        Notes
        -----
        Only real-valued fields on the two-sphere are supported, i.e.
890
        `dtype` has to be either numpy.float64 or numpy.float32.
Marco Selig's avatar
Marco Selig committed
891
892
893
894
895
896
897
898
899
900
901
902
903
904

        References
        ----------
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `nlat` and `nlon`.
905
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
906
907
908
909
910
911
912
            Data type of the field values.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for spherical spaces.
        vol : numpy.ndarray
            An array containing the pixel sizes.
    """
913

Ultima's avatar
Ultima committed
914
    def __init__(self, nlat, nlon=None, dtype=np.dtype('float64'),
csongor's avatar
csongor committed
915
                 datamodel='not', comm=gc['default_comm']):
Marco Selig's avatar
Marco Selig committed
916
917
918
919
920
921
922
923
924
        """
            Sets the attributes for a gl_space class instance.

            Parameters
            ----------
            nlat : int
                Number of latitudinal bins, or rings.
            nlon : int, *optional*
                Number of longitudinal bins (default: ``2*nlat - 1``).
925
            dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
926
927
928
929
930
931
932
933
934
935
936
937
938
939
                Data type of the field values (default: numpy.float64).

            Returns
            -------
            None

            Raises
            ------
            ImportError
                If the libsharp_wrapper_gl module is not available.
            ValueError
                If input `nlat` is invaild.

        """
940
        # check imports
Ultima's avatar
Ultima committed
941
        if not gc['use_libsharp']:
942
            raise ImportError(about._errors.cstring(
Ultima's avatar
Ultima committed
943
                "ERROR: libsharp_wrapper_gl not loaded."))
944

Ultima's avatar
Ultima committed
945
        self._cache_dict = {'check_codomain': {}}
946
        self.paradict = gl_space_paradict(nlat=nlat, nlon=nlon)
Marco Selig's avatar
Marco Selig committed
947

948
949
950
        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('float32'), np.dtype('float64')]:
Marco Selig's avatar
Marco Selig committed
951
            about.warnings.cprint("WARNING: data type set to default.")
952
953
            dtype = np.dtype('float')
        self.dtype = dtype
954

955
        # set datamodel
csongor's avatar
csongor committed
956
        if datamodel not in ['not']:
957
            about.warnings.cprint("WARNING: datamodel set to default.")
958
        self.datamodel = datamodel
Marco Selig's avatar
Marco Selig committed
959
960

        self.discrete = False
961
        self.harmonic = False
csongor's avatar
csongor committed
962
        self.distances = tuple(gl.vol(self.paradict['nlat'],
963
                                      nlon=self.paradict['nlon']
csongor's avatar
csongor committed
964
                                      ).astype(np.float))
965
        self.comm = self._parse_comm(comm)
966
967
968

    @property
    def para(self):
969
        temp = np.array([self.paradict['nlat'],
970
971
                         self.paradict['nlon']], dtype=int)
        return temp
972

973
974
975
976
    @para.setter
    def para(self, x):
        self.paradict['nlat'] = x[0]
        self.paradict['nlon'] = x[1]
977

978
    def copy(self):
979
980
981
982
        return gl_space(nlat=self.paradict['nlat'],
                        nlon=self.paradict['nlon'],
                        dtype=self.dtype)

983
    def get_shape(self):
984
985
986
        return (np.int((self.paradict['nlat'] * self.paradict['nlon'])),)

    def get_dof(self, split=False):
Marco Selig's avatar
Marco Selig committed
987
988
989
990
991
992
993
994
995
996
997
998
999
        """
            Computes the number of degrees of freedom of the space.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.

            Notes
            -----
            Since the :py:class:`gl_space` class only supports real-valued
            fields, the number of degrees of freedom is the number of pixels.
        """
Ultima's avatar
Ultima committed
1000
1001
1002
1003
        if split:
            return self.get_shape()
        else:
            return self.get_dim()
Marco Selig's avatar
Marco Selig committed
1004

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
    def get_meta_volume(self, split=False):
        """
            Calculates the meta volumes.

            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.

            Parameters
            ----------
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).

            Returns
            -------
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.

            Notes
            -----
            For Gauss-Legendre pixelizations, the meta volumes are the pixel
            sizes.
        """
        if not split:
            return np.float(4 * np.pi)
        else:
            mol = self.cast(1, dtype=np.float)
            return self.calc_weight(mol, power=1)

1036
    # TODO: Extend to binning/log
1037
1038
1039
1040
1041
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['nlat']
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
1042
1043
1044
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)
Marco Selig's avatar
Marco Selig committed
1045

Ultima's avatar
Ultima committed
1046
    def _check_codomain(self, codomain):
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
        """
            Checks whether a given codomain is compatible to the space or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`gl_space` and
            :py:class:`lm_space`.
        """
        if codomain is None:
            return False

Ultima's avatar
Ultima committed
1068
1069
1070
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring("ERROR: invalid input."))

1071
1072
1073
        if self.datamodel is not codomain.datamodel:
            return False

1074
1075
1076
        if self.comm is not codomain.comm:
            return False

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
        if isinstance(codomain, lm_space):
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = codomain.paradict['lmax']
            mmax = codomain.paradict['mmax']
            # nlon==2*lat-1
            # lmax==nlat-1
            # lmax==mmax
            if (nlon == 2*nlat-1) and (lmax == nlat-1) and (lmax == mmax):
                return True

        return False

    def get_codomain(self, **kwargs):
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  an instance of the :py:class:`lm_space` class.

            Returns
            -------
            codomain : nifty.lm_space
                A compatible codomain.
        """
        nlat = self.paradict['nlat']
        lmax = nlat-1
        mmax = nlat-1
        # lmax,mmax = nlat-1,nlat-1
        if self.dtype == np.dtype('float32'):
1105
1106
1107
            return lm_space(lmax=lmax, mmax=mmax, dtype=np.complex64,
                            datamodel=self.datamodel,
                            comm=self.comm)
1108
        else:
1109
1110
1111
            return lm_space(lmax=lmax, mmax=mmax, dtype=np.complex128,
                            datamodel=self.datamodel,
                            comm=self.comm)
1112

1113
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
        """
            Generates random field values according to the specifications given
            by the parameters.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
Ultima's avatar
Ultima committed
1131
1132
                - "gau" (normal distribution with zero-mean and a given
                standard
Marco Selig's avatar
Marco Selig committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
Ultima's avatar
Ultima committed
1143
1144
            spec : {scalar, list, numpy.array, nifty.field, function},
            *optional*
Marco Selig's avatar
Marco Selig committed
1145
1146
1147
1148
1149
1150
1151
1152
                Power spectrum (default: 1).
            codomain : nifty.lm_space, *optional*
                A compatible codomain for power indexing (default: None).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
1153
        arg = random.parse_arguments(self, **kwargs)
1154

1155
1156
        if(arg is None):
            x = np.zeros(self.get_shape(), dtype=self.dtype)
Marco Selig's avatar
Marco Selig committed
1157

Ultima's avatar
Ultima committed
1158
        elif(arg['random'] == "pm1"):
1159
            x = random.pm1(dtype=self.dtype, shape=self.get_shape())
1160

Ultima's avatar
Ultima committed
1161
        elif(arg['random'] == "gau"):
1162
1163
            x = random.gau(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
1164
1165
                           mean=arg['mean'],
                           std=arg['std'])
Marco Selig's avatar
Marco Selig committed
1166

Ultima's avatar
Ultima committed
1167
        elif(arg['random'] == "syn"):
1168
1169
1170
1171
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = nlat - 1
            if self.dtype == np.dtype('float32'):
csongor's avatar
csongor committed
1172
                x = self.cast(gl.synfast_f(arg['spec'],
1173
                                 nlat=nlat, nlon=nlon,
1174
                                 lmax=lmax, mmax=lmax, alm=False))
Marco Selig's avatar
Marco Selig committed
1175
            else:
csongor's avatar
csongor committed
1176
                x = self.cast(gl.synfast(arg['spec'],
1177
                               nlat=nlat, nlon=nlon,
1178
                               lmax=lmax, mmax=lmax, alm=False))
1179
1180
1181
            # weight if discrete