default_iteration_controller.py 1.93 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from .iteration_controller import IterationController

class DefaultIterationController(IterationController):
    def __init__ (self, tol_gradnorm=None, convergence_level=1,
                  iteration_limit=None):
        super(DefaultIterationController, self).__init__()
        self._tol_gradnorm = tol_gradnorm
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit

    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        return self.check(energy)

    def check(self, energy):
        self._itcount += 1
        print "iteration",self._itcount,"gradnorm",energy.gradient_norm,"level",self._ccount
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                return self.CONVERGED
        if self._tol_gradnorm is not None:
            if energy.gradient_norm <= self._tol_gradnorm:
                self._ccount += 1
            if self._ccount >= self._convergence_level:
                return self.CONVERGED
        else:
            self._ccount = max(0, self._ccount-1)

        return self.CONTINUE