test_fisher_metric.py 2.92 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2020 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np
import pytest

import nifty6 as ift

from ..common import list2fixture, setup_function, teardown_function

spaces = [ift.GLSpace(5),
          ift.MultiDomain.make({'': ift.RGSpace(5, distances=.789)}),
          (ift.RGSpace(3, distances=.789), ift.UnstructuredDomain(2))]
pmp = pytest.mark.parametrize
field = list2fixture([ift.from_random(sp, 'normal') for sp in spaces] +
        [ift.from_random(sp, 'normal', dtype=np.complex128) for sp in spaces])

Reimar Leike's avatar
Reimar Leike committed
32
Nsamp = 2000
Reimar Leike's avatar
Reimar Leike committed
33
np.random.seed(42)
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

def _to_array(d):
    if isinstance(d, np.ndarray):
        return d
    assert isinstance(d, dict)
    return np.concatenate(list(d.values()))

def energy_tester(pos, get_noisy_data, energy_initializer):
    domain = pos.domain
    test_vec = ift.from_random(domain, 'normal')
    results = []
    lin = ift.Linearization.make_var(pos)
    for i in range(Nsamp):
        data = get_noisy_data(pos)
        energy = energy_initializer(data)
        grad = energy(lin).jac.adjoint(ift.full(energy.target, 1.))
        results.append(_to_array((grad*grad.s_vdot(test_vec)).val))
    res = np.mean(np.array(results), axis=0)
    std = np.std(np.array(results), axis=0)/np.sqrt(Nsamp)
    energy = energy_initializer(data)
    lin = ift.Linearization.make_var(pos, want_metric=True)
    res2 = _to_array(energy(lin).metric(test_vec).val)
Reimar Leike's avatar
Reimar Leike committed
56
    np.testing.assert_allclose(res/std, res2/std, atol=6)
57
58
59
60
61

def test_GaussianEnergy(field):
    dtype = field.dtype
    icov = ift.from_random(field.domain, 'normal')**2
    icov = ift.makeOp(icov)
62
    get_noisy_data = lambda mean : mean + icov.draw_sample_with_dtype(
63
64
65
66
67
68
69
70
71
72
73
74
            from_inverse=True, dtype=dtype)
    E_init = lambda mean : ift.GaussianEnergy(mean=mean,
            inverse_covariance=icov)
    energy_tester(field, get_noisy_data, E_init)

def test_PoissonEnergy(field):
    if not isinstance(field, ift.Field):
        return
    if np.iscomplexobj(field.val):
        return
    def get_noisy_data(mean):
        return ift.makeField(mean.domain, np.random.poisson(mean.val))
75
    lam = 10*(field**2).clip(0.1,None) # make rate positive and high enough to avoid bad statistic
76
77
78
    E_init = lambda mean : ift.PoissonianEnergy(mean)
    energy_tester(lam, get_noisy_data, E_init)