test_rg_space.py 7.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

Jait Dixit's avatar
Jait Dixit committed
19
20
21
22
23
from __future__ import division

import unittest
import numpy as np

24
from numpy.testing import assert_, assert_equal, assert_almost_equal
Jait Dixit's avatar
Jait Dixit committed
25
26
from nifty import RGSpace
from test.common import expand
Martin Reinecke's avatar
Martin Reinecke committed
27
from itertools import product
Jait Dixit's avatar
Jait Dixit committed
28

Martin Reinecke's avatar
Martin Reinecke committed
29
# [shape, distances, harmonic, expected]
30
CONSTRUCTOR_CONFIGS = [
Martin Reinecke's avatar
Martin Reinecke committed
31
        [(8,), None, False,
Jait Dixit's avatar
Jait Dixit committed
32
33
34
35
36
37
38
            {
                'shape': (8,),
                'distances': (0.125,),
                'harmonic': False,
                'dim': 8,
                'total_volume': 1.0
            }],
Martin Reinecke's avatar
Martin Reinecke committed
39
        [(8,), None, True,
Jait Dixit's avatar
Jait Dixit committed
40
41
42
43
44
45
46
            {
                'shape': (8,),
                'distances': (1.0,),
                'harmonic': True,
                'dim': 8,
                'total_volume': 8.0
            }],
Martin Reinecke's avatar
Martin Reinecke committed
47
        [(8,), (12,), True,
Jait Dixit's avatar
Jait Dixit committed
48
49
50
51
52
53
54
            {
                'shape': (8,),
                'distances': (12.0,),
                'harmonic': True,
                'dim': 8,
                'total_volume': 96.0
            }],
Martin Reinecke's avatar
Martin Reinecke committed
55
        [(11, 11), None, False,
Jait Dixit's avatar
Jait Dixit committed
56
57
58
59
60
61
62
            {
                'shape': (11, 11),
                'distances': (1/11, 1/11),
                'harmonic': False,
                'dim': 121,
                'total_volume': 1.0
            }],
Martin Reinecke's avatar
Martin Reinecke committed
63
        [(11, 11), (1.3, 1.3), True,
Jait Dixit's avatar
Jait Dixit committed
64
65
66
67
68
69
70
71
72
73
74
            {
                'shape': (11, 11),
                'distances': (1.3, 1.3),
                'harmonic': True,
                'dim': 121,
                'total_volume': 204.49
            }]

    ]


75
def get_distance_array_configs():
Martin Reinecke's avatar
Martin Reinecke committed
76
    # for RGSpace(shape=(4, 4), distances=None)
Martin Reinecke's avatar
Martin Reinecke committed
77
78
79
80
81
82
83
    cords_0 = np.ogrid[0:4, 0:4]
    da_0 = ((cords_0[0] - 4 // 2) * 0.25)**2
    da_0 = np.fft.ifftshift(da_0)
    temp = ((cords_0[1] - 4 // 2) * 0.25)**2
    temp = np.fft.ifftshift(temp)
    da_0 = da_0 + temp
    da_0 = np.sqrt(da_0)
84
    return [
Martin Reinecke's avatar
Martin Reinecke committed
85
        [(4, 4),  None, da_0],
86
87
88
89
        ]


def get_weight_configs():
Martin Reinecke's avatar
Martin Reinecke committed
90
91
92
93
94
95
96
97
98
99
100
    np.random.seed(42)
    # power 1
    w_0_x = np.random.rand(32, 12, 6)
    # for RGSpace(shape=(11,11), distances=None, harmonic=False)
    w_0_res = w_0_x * (1/11 * 1/11)
    # for RGSpace(shape=(11, 11), distances=(1.3,1.3), harmonic=False)
    w_1_res = w_0_x * (1.3 * 1.3)
    # for RGSpace(shape=(11,11), distances=None, harmonic=True)
    w_2_res = w_0_x * (1.0 * 1.0)
    # for RGSpace(shape=(11,11), distances=(1.3, 1,3), harmonic=True)
    w_3_res = w_0_x * (1.3 * 1.3)
101
    return [
Martin Reinecke's avatar
Martin Reinecke committed
102
103
104
105
106
107
108
109
        [(11, 11), None, False, w_0_x, 1, None, False, w_0_res],
        [(11, 11), None, False, w_0_x.copy(), 1, None,  True, w_0_res],
        [(11, 11), (1.3, 1.3), False, w_0_x, 1, None, False, w_1_res],
        [(11, 11), (1.3, 1.3), False, w_0_x.copy(), 1, None,  True, w_1_res],
        [(11, 11), None, True, w_0_x, 1, None, False, w_2_res],
        [(11, 11), None, True, w_0_x.copy(), 1, None,  True, w_2_res],
        [(11, 11), (1.3, 1.3), True, w_0_x, 1, None, False, w_3_res],
        [(11, 11), (1.3, 1.3), True, w_0_x.copy(), 1, None,  True, w_3_res]
110
111
112
        ]


Jait Dixit's avatar
Jait Dixit committed
113
class RGSpaceInterfaceTests(unittest.TestCase):
Martin Reinecke's avatar
Martin Reinecke committed
114
    @expand([['distances', tuple]])
115
    def test_property_ret_type(self, attribute, expected_type):
116
        x = RGSpace(1)
Jait Dixit's avatar
Jait Dixit committed
117
118
119
120
        assert_(isinstance(getattr(x, attribute), expected_type))


class RGSpaceFunctionalityTests(unittest.TestCase):
121
    @expand(CONSTRUCTOR_CONFIGS)
Martin Reinecke's avatar
Martin Reinecke committed
122
    def test_constructor(self, shape, distances,
Martin Reinecke's avatar
Martin Reinecke committed
123
                         harmonic, expected):
Martin Reinecke's avatar
Martin Reinecke committed
124
        x = RGSpace(shape, distances, harmonic)
Jait Dixit's avatar
Jait Dixit committed
125
126
127
        for key, value in expected.iteritems():
            assert_equal(getattr(x, key), value)

128
129
130
131
132
133
    @expand(product([(10,), (11,), (1, 1), (4, 4), (5, 7), (8, 12), (7, 16),
                     (4, 6, 8), (17, 5, 3)],
                    [True, False]))
    def test_hermitian_decomposition(self, shape, zerocenter):
        r = RGSpace(shape, harmonic=True, zerocenter=zerocenter)
        v = np.empty(shape, dtype=np.complex128)
Martin Reinecke's avatar
Martin Reinecke committed
134
135
        v.real = np.random.random(shape)
        v.imag = np.random.random(shape)
136
        h, a = r.hermitian_decomposition(v)
Martin Reinecke's avatar
Martin Reinecke committed
137
        # make sure that data == h + a
Martin Reinecke's avatar
Martin Reinecke committed
138
        # NOTE: this is only correct for preserve_gaussian_variance==False,
139
140
141
142
143
        #       but I consider this an intrinsic property of a hermitian
        #       decomposition.
        assert_almost_equal(v, h+a)
        print (h, a)

Martin Reinecke's avatar
Martin Reinecke committed
144
        # test hermitianity of h
145
        it = np.nditer(h, flags=['multi_index'])
Martin Reinecke's avatar
Martin Reinecke committed
146
147
148
149
        while not it.finished:
            i1 = it.multi_index
            i2 = []
            for i in range(len(i1)):
150
151
152
153
                if r.zerocenter[i] and r.shape[i] % 2 != 0:
                    i2.append(h.shape[i]-i1[i]-1)
                else:
                    i2.append(h.shape[i]-i1[i] if i1[i] > 0 else 0)
Martin Reinecke's avatar
Martin Reinecke committed
154
            i2 = tuple(i2)
155
156
            assert_almost_equal(h[i1], np.conj(h[i2]))
            assert_almost_equal(a[i1], -np.conj(a[i2]))
Martin Reinecke's avatar
Martin Reinecke committed
157
            it.iternext()
158
159
160
161
162
163

    @expand(product([(10,), (11,), (1, 1), (4, 4), (5, 7), (8, 12), (7, 16),
                     (4, 6, 8), (17, 5, 3)],
                    [True, False]))
    def test_hermitian_decomposition2(self, shape, zerocenter):
        r = RGSpace(shape, harmonic=True, zerocenter=zerocenter)
Martin Reinecke's avatar
Martin Reinecke committed
164
        v = np.random.random(shape)
165
        h, a = r.hermitian_decomposition(v)
Martin Reinecke's avatar
Martin Reinecke committed
166
        # make sure that data == h + a
167
        assert_almost_equal(v, h+a)
Martin Reinecke's avatar
Martin Reinecke committed
168
        # test hermitianity of h
169
        it = np.nditer(h, flags=['multi_index'])
Martin Reinecke's avatar
Martin Reinecke committed
170
171
172
173
        while not it.finished:
            i1 = it.multi_index
            i2 = []
            for i in range(len(i1)):
174
175
176
177
                if r.zerocenter[i] and r.shape[i] % 2 != 0:
                    i2.append(h.shape[i]-i1[i]-1)
                else:
                    i2.append(h.shape[i]-i1[i] if i1[i] > 0 else 0)
Martin Reinecke's avatar
Martin Reinecke committed
178
            i2 = tuple(i2)
179
180
            assert_almost_equal(h[i1], np.conj(h[i2]))
            assert_almost_equal(a[i1], -np.conj(a[i2]))
Martin Reinecke's avatar
Martin Reinecke committed
181
            it.iternext()
Jait Dixit's avatar
Jait Dixit committed
182

183
    @expand(get_distance_array_configs())
Martin Reinecke's avatar
Martin Reinecke committed
184
185
    def test_distance_array(self, shape, distances, expected):
        r = RGSpace(shape=shape, distances=distances)
186
        assert_almost_equal(r.get_distance_array('not'), expected)
Jait Dixit's avatar
Jait Dixit committed
187

188
189
190
191
192
193
194
195
    @expand(get_weight_configs())
    def test_weight(self, shape, distances, harmonic, x, power, axes,
                    inplace, expected):
        r = RGSpace(shape=shape, distances=distances, harmonic=harmonic)
        res = r.weight(x, power, axes, inplace)
        assert_almost_equal(res, expected)
        if inplace:
            assert_(x is res)
196
197
198
199
200

    def test_hermitian_fixed_points(self):
        x = RGSpace((5, 6, 5, 6), zerocenter=[False, False, True, True])
        assert_equal(x.hermitian_fixed_points(),
                     [(0, 0, 2, 0), (0, 0, 2, 3), (0, 3, 2, 0), (0, 3, 2, 3)])