field.py 44.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
20
21
from builtins import zip
from builtins import range
22

23
import ast
csongor's avatar
csongor committed
24
25
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
26
27
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
28

Martin Reinecke's avatar
Martin Reinecke committed
29
from .config import nifty_configuration as gc
csongor's avatar
csongor committed
30

Martin Reinecke's avatar
Martin Reinecke committed
31
from .domain_object import DomainObject
32

Martin Reinecke's avatar
Martin Reinecke committed
33
from .spaces.power_space import PowerSpace
csongor's avatar
csongor committed
34

Martin Reinecke's avatar
Martin Reinecke committed
35
36
from . import nifty_utilities as utilities
from .random import Random
Martin Reinecke's avatar
Martin Reinecke committed
37
from functools import reduce
38

csongor's avatar
csongor committed
39

Jait Dixit's avatar
Jait Dixit committed
40
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
41
42
43
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
44
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
45
46
    In addition Field has methods to work with power-spectra.

47
48
49
50
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
51
        LMSpace or PowerSpace. It might also be a FieldArray, which is
52
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
53

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
54
    val : scalar, numpy.ndarray, Field
55
56
57
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
58

59
60
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
61

62
63
64
65
    copy: boolean

    Attributes
    ----------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
66
    val : numpy.ndarray
Theo Steininger's avatar
Theo Steininger committed
67

68
69
70
71
72
73
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
Theo Steininger's avatar
Theo Steininger committed
74

75
76
77
78
79
80
81
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
82

83
    """
84

Theo Steininger's avatar
Theo Steininger committed
85
    # ---Initialization methods---
86

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
87
    def __init__(self, domain=None, val=None, dtype=None, copy=False):
88
        self.domain = self._parse_domain(domain=domain, val=val)
89
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
90

Theo Steininger's avatar
Theo Steininger committed
91
        self.dtype = self._infer_dtype(dtype=dtype,
92
                                       val=val)
93

94
95
96
97
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
98

99
    def _parse_domain(self, domain, val=None):
100
        if domain is None:
101
102
103
104
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
105
        elif isinstance(domain, DomainObject):
106
            domain = (domain,)
107
108
109
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
110
        for d in domain:
111
            if not isinstance(d, DomainObject):
112
113
                raise TypeError(
                    "Given domain contains something that is not a "
114
                    "DomainObject instance.")
csongor's avatar
csongor committed
115
116
        return domain

Theo Steininger's avatar
Theo Steininger committed
117
118
119
120
121
122
123
124
125
126
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
127

128
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
129
        if dtype is None:
130
            try:
131
                dtype = val.dtype
132
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
133
134
135
                try:
                    if val is None:
                        raise TypeError
136
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
137
                except(TypeError):
138
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
139
        else:
140
            dtype = np.dtype(dtype)
141

142
143
        dtype = np.result_type(dtype, np.float)

Theo Steininger's avatar
Theo Steininger committed
144
        return dtype
145

146
    # ---Factory methods---
147

148
    @classmethod
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
149
    def from_random(cls, random_type, domain=None, dtype=None, **kwargs):
150
151
152
153
154
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
155

156
157
158
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
159

160
161
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
162

163
164
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
165

166
167
168
169
170
171
172
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
173
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
174

175
176

        """
Theo Steininger's avatar
Theo Steininger committed
177

178
        # create a initially empty field
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
179
        f = cls(domain=domain, dtype=dtype)
180
181
182
183
184
185
186

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
187
        # extract the data from f and apply the appropriate
188
189
190
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
191

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
192
193
194
        sample[:]=generator_function(dtype=f.dtype,
                                             shape=sample.shape,
                                             **random_arguments)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
214
        else:
215
216
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
217

218
        return random_arguments
csongor's avatar
csongor committed
219

220
221
    # ---Powerspectral methods---

Martin Reinecke's avatar
Martin Reinecke committed
222
    def power_analyze(self, spaces=None, logarithmic=None, nbin=None,
223
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
224
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
225

Theo Steininger's avatar
Theo Steininger committed
226
227
228
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
229
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
230
        field, corresponding to the square root of the power spectrum.
231
232
233

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
234
235
236
237
238
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
Martin Reinecke's avatar
Martin Reinecke committed
239
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
240
241
242
243
244
245
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
246
247
            Overrides nbin and logarithmic.
            if binbounds==None : bins are inferred.
248
249
250
251
252
253
254
255
256
257
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
258

259
260
261
262
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
263
264
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
265
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
266

267
268
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
269
        out : Field
Martin Reinecke's avatar
Martin Reinecke committed
270
            The output object. Its domain is a PowerSpace and it contains
271
272
273
274
275
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
276

277
        """
Theo Steininger's avatar
Theo Steininger committed
278

Theo Steininger's avatar
Theo Steininger committed
279
        # check if all spaces in `self.domain` are either harmonic or
280
281
282
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
283
                self.logger.info(
284
                    "Field has a space in `domain` which is neither "
285
286
287
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
288
289
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
290
            spaces = list(range(len(self.domain)))
291
292

        if len(spaces) == 0:
293
294
            raise ValueError(
                "No space for analysis specified.")
295

296
297
298
299
300
301
302
303
304
305
306
307
308
        if keep_phase_information:
            parts_val = self._hermitian_decomposition(
                                              domain=self.domain,
                                              val=self.val,
                                              spaces=spaces,
                                              domain_axes=self.domain_axes,
                                              preserve_gaussian_variance=False)
            parts = [self.copy_empty().set_val(part_val, copy=False)
                     for part_val in parts_val]
        else:
            parts = [self]

        parts = [abs(part)**2 for part in parts]
309
310

        for space_index in spaces:
311
312
            parts = [self._single_power_analyze(
                                work_field=part,
313
314
315
                                space_index=space_index,
                                logarithmic=logarithmic,
                                nbin=nbin,
316
317
                                binbounds=binbounds)
                     for part in parts]
318

319
320
321
322
323
324
        if keep_phase_information:
            result_field = parts[0] + 1j*parts[1]
        else:
            result_field = parts[0]

        return result_field
325
326
327

    @classmethod
    def _single_power_analyze(cls, work_field, space_index, logarithmic, nbin,
328
                              binbounds):
329

330
        if not work_field.domain[space_index].harmonic:
331
332
            raise ValueError(
                "The analyzed space must be harmonic.")
333

334
335
336
337
338
339
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

340
        harmonic_domain = work_field.domain[space_index]
341
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
Theo Steininger's avatar
Theo Steininger committed
342
343
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
344
345
        power_spectrum = cls._calculate_power_spectrum(
                                field_val=work_field.val,
Martin Reinecke's avatar
Martin Reinecke committed
346
                                pdomain=power_domain,
347
                                axes=work_field.domain_axes[space_index])
348
349

        # create the result field and put power_spectrum into it
350
        result_domain = list(work_field.domain)
351
        result_domain[space_index] = power_domain
352
        result_dtype = power_spectrum.dtype
353

354
        result_field = work_field.copy_empty(
355
                   domain=result_domain,
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
356
                   dtype=result_dtype)
357
358
359
360
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

361
    @classmethod
Martin Reinecke's avatar
Martin Reinecke committed
362
    def _calculate_power_spectrum(cls, field_val, pdomain, axes=None):
363

Martin Reinecke's avatar
Martin Reinecke committed
364
365
366
        pindex = pdomain.pindex
        # MR FIXME: how about iterating over slices, instead of replicating
        # pindex? Would save memory and probably isn't slower.
367
        if axes is not None:
368
369
370
371
            pindex = cls._shape_up_pindex(
                            pindex=pindex,
                            target_shape=field_val.shape,
                            axes=axes)
Theo Steininger's avatar
Theo Steininger committed
372

373
        power_spectrum = pindex.bincount(weights=field_val,
374
                                         axis=axes)
Martin Reinecke's avatar
Martin Reinecke committed
375
        rho = pdomain.rho
376
377
378
379
380
381
382
383
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        return power_spectrum

384
385
    @staticmethod
    def _shape_up_pindex(pindex, target_shape, target_strategy, axes):
Theo Steininger's avatar
Theo Steininger committed
386
        semiscaled_local_shape = [1, ] * len(target_shape)
Theo Steininger's avatar
Theo Steininger committed
387
388
        for i in range(len(axes)):
            semiscaled_local_shape[axes[i]] = pindex.local_shape[i]
389
        local_data = pindex.get_local_data(copy=False)
Theo Steininger's avatar
Theo Steininger committed
390
        semiscaled_local_data = local_data.reshape(semiscaled_local_shape)
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
391
        result_obj = pindex.copy_empty(global_shape=target_shape)
Theo Steininger's avatar
Theo Steininger committed
392
        result_obj.data[:] = semiscaled_local_data
393
394
395

        return result_obj

396
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
397
                         mean=None, std=None):
Theo Steininger's avatar
Theo Steininger committed
398
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
399

Theo Steininger's avatar
Theo Steininger committed
400
        This method draws a Gaussian random field in the harmonic partner
Martin Reinecke's avatar
typos    
Martin Reinecke committed
401
        domain of this field's domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
402

403
404
405
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
406
407
408
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
409
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
410
411
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
412
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
413
414
415
416
417
418
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
419
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
420
421
422
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
423

424
425
426
427
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
428
            stored in the `spaces` in `self`.
429

Theo Steininger's avatar
Theo Steininger committed
430
431
432
433
434
435
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

436
437
438
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
439
440
441
442
443

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

444
        """
Theo Steininger's avatar
Theo Steininger committed
445

446
447
448
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
449
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
450
            spaces = list(range(len(self.domain)))
Theo Steininger's avatar
Theo Steininger committed
451

452
453
454
455
456
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
457
458
459

        # create the result domain
        result_domain = list(self.domain)
460
461
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
462
            harmonic_domain = power_space.harmonic_partner
463
            result_domain[power_space_index] = harmonic_domain
464
465
466

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
467
        if real_power:
468
            result_list = [None]
469
470
        else:
            result_list = [None, None]
471

472
473
        result_list = [self.__class__.from_random(
                             'normal',
474
475
476
                             mean=mean,
                             std=std,
                             domain=result_domain,
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
477
                             dtype=np.complex)
478
479
480
481
482
483
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
484

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
485
        spec = self.val.copy()
486
487
        spec = np.sqrt(spec)

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

504
        if real_signal:
505
            result_val_list = [self._hermitian_decomposition(
506
507
508
509
510
                                            result_domain,
                                            result_val,
                                            spaces,
                                            result_list[0].domain_axes,
                                            preserve_gaussian_variance=True)[0]
511
                               for result_val in result_val_list]
512
513
514
515
516
517
518

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
519
520
521
            if not issubclass(result_val_list[0].dtype.type,
                              np.complexfloating):
                result = result.real
522
        else:
523
524
525
526
            result = result_list[0] + 1j*result_list[1]

        return result

527
    @staticmethod
528
529
    def _hermitian_decomposition(domain, val, spaces, domain_axes,
                                 preserve_gaussian_variance=False):
530
531
532
533
534
535

        flipped_val = val
        for space in spaces:
            flipped_val = domain[space].hermitianize_inverter(
                                                    x=flipped_val,
                                                    axes=domain_axes[space])
536
537
        # if no flips at all where performed `h` is a real field.
        # if all spaces use the default implementation of doing nothing when
Theo Steininger's avatar
Theo Steininger committed
538
        # no flips are applied, one can use `is` to infer this case.
539
540
541
542
543
544
545
546

        if flipped_val is val:
            h = flipped_val.real
            a = 1j * flipped_val.imag
        else:
            flipped_val = flipped_val.conjugate()
            h = (val + flipped_val)/2.
            a = val - h
547
548

        # correct variance
549
        if preserve_gaussian_variance:
Martin Reinecke's avatar
Martin Reinecke committed
550
551
            assert issubclass(val.dtype.type, np.complexfloating),\
                    "complex input field is needed here"
552
553
554
            h *= np.sqrt(2)
            a *= np.sqrt(2)

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
#            The code below should not be needed in practice, since it would
#            only ever be called when hermitianizing a purely real field.
#            However it might be of educational use and keep us from forgetting
#            how these things are done ...

#            if not issubclass(val.dtype.type, np.complexfloating):
#                # in principle one must not correct the variance for the fixed
#                # points of the hermitianization. However, for a complex field
#                # the input field loses half of its power at its fixed points
#                # in the `hermitian` part. Hence, here a factor of sqrt(2) is
#                # also necessary!
#                # => The hermitianization can be done on a space level since
#                # either nothing must be done (LMSpace) or ALL points need a
#                # factor of sqrt(2)
#                # => use the preserve_gaussian_variance flag in the
#                # hermitian_decomposition method above.
#
#                # This code is for educational purposes:
#                fixed_points = [domain[i].hermitian_fixed_points()
#                                for i in spaces]
#                fixed_points = [[fp] if fp is None else fp
#                                for fp in fixed_points]
#
#                for product_point in itertools.product(*fixed_points):
#                    slice_object = np.array((slice(None), )*len(val.shape),
#                                            dtype=np.object)
#                    for i, sp in enumerate(spaces):
#                        point_component = product_point[i]
#                        if point_component is None:
#                            point_component = slice(None)
#                        slice_object[list(domain_axes[sp])] = point_component
#
#                    slice_object = tuple(slice_object)
#                    h[slice_object] /= np.sqrt(2)
#                    a[slice_object] /= np.sqrt(2)

591
592
        return (h, a)

593
594
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
595
596
597

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
598
        pindex = power_space.pindex
599
600
601
602
603
604

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

605
606
607
608
609
        local_blow_up = [slice(None)]*len(spec.shape)
        # it is important to count from behind, since spec potentially grows
        # with every iteration
        index = self.domain_axes[power_space_index][0]-len(self.shape)
        local_blow_up[index] = local_pindex
610
        # here, the power_spectrum is distributed into the new shape
611
612
        local_rescaler = spec[local_blow_up]
        return local_rescaler
613

Theo Steininger's avatar
Theo Steininger committed
614
    # ---Properties---
615

Theo Steininger's avatar
Theo Steininger committed
616
    def set_val(self, new_val=None, copy=False):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
617
        """ Sets the field's data object.
618
619
620

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
621
        new_val : scalar, array-like, Field, None *optional*
622
623
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
624

625
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
626
627
            If False, Field tries to not copy the input data but use it
            directly.
628
629
630
631
632
633
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
634

635
636
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
637
638
            new_val = new_val.copy()
        self._val = new_val
639
        return self
csongor's avatar
csongor committed
640

641
    def get_val(self, copy=False):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
642
        """ Returns the data object associated with this Field.
643
644
645
646

        Parameters
        ----------
        copy : boolean
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
647
            If true, a copy of the Field's underlying data object
Theo Steininger's avatar
Theo Steininger committed
648
            is returned.
Theo Steininger's avatar
Theo Steininger committed
649

650
651
        Returns
        -------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
652
        out : numpy.ndarray
653
654
655
656
657
658

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
659

660
661
662
        if self._val is None:
            self.set_val(None)

663
        if copy:
Theo Steininger's avatar
Theo Steininger committed
664
            return self._val.copy()
665
        else:
Theo Steininger's avatar
Theo Steininger committed
666
            return self._val
csongor's avatar
csongor committed
667

Theo Steininger's avatar
Theo Steininger committed
668
669
    @property
    def val(self):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
670
        """ Returns the data object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
671

672
673
        Returns
        -------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
674
        out : numpy.ndarray
675
676
677
678
679
680

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
681

682
        return self.get_val(copy=False)
csongor's avatar
csongor committed
683

Theo Steininger's avatar
Theo Steininger committed
684
685
    @val.setter
    def val(self, new_val):
686
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
687

688
689
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
690
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
691

692
693
694
        Returns
        -------
        out : tuple
Martin Reinecke's avatar
Martin Reinecke committed
695
            The output object. The tuple contains the dimensions of the spaces
696
697
698
699
700
701
702
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
703
704
705
706
707
708
709
710
        if not hasattr(self, '_shape'):
            shape_tuple = tuple(sp.shape for sp in self.domain)
            try:
                global_shape = reduce(lambda x, y: x + y, shape_tuple)
            except TypeError:
                global_shape = ()
            self._shape = global_shape
        return self._shape
csongor's avatar
csongor committed
711

712
713
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
714
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
715

Theo Steininger's avatar
Theo Steininger committed
716
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
717

718
719
720
721
722
723
724
725
726
727
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
728

729
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
730
        try:
Martin Reinecke's avatar
Martin Reinecke committed
731
            return int(reduce(lambda x, y: x * y, dim_tuple))
Theo Steininger's avatar
Theo Steininger committed
732
733
        except TypeError:
            return 0
csongor's avatar
csongor committed
734

735
736
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
737
738
739
740
741
742
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
743
744
745
746
747
748
749
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
750
751
752
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
753
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
754
        try:
Theo Steininger's avatar
Theo Steininger committed
755
            return reduce(lambda x, y: x * y, volume_tuple)
756
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
757
            return 0.
758

Theo Steininger's avatar
Theo Steininger committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
    @property
    def real(self):
        """ The real part of the field (data is not copied).
        """
        real_part = self.val.real
        result = self.copy_empty(dtype=real_part.dtype)
        result.set_val(new_val=real_part, copy=False)
        return result

    @property
    def imag(self):
        """ The imaginary part of the field (data is not copied).
        """
        real_part = self.val.imag
        result = self.copy_empty(dtype=real_part.dtype)
        result.set_val(new_val=real_part, copy=False)
        return result

Theo Steininger's avatar
Theo Steininger committed
777
    # ---Special unary/binary operations---
778

csongor's avatar
csongor committed
779
    def cast(self, x=None, dtype=None):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
780
        """ Transforms x to an object with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
781

782
783
        Parameters
        ----------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
784
785
786
        x : scalar, numpy.ndarray, Field, array_like
            The input that shall be casted on a numpy.ndarray of the same shape
            like the domain.
Theo Steininger's avatar
Theo Steininger committed
787

788
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
789
            The datatype the output shall have. This can be used to override
Martin Reinecke's avatar
typos    
Martin Reinecke committed
790
            the field's dtype.
Theo Steininger's avatar
Theo Steininger committed
791

792
793
        Returns
        -------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
794
        out : numpy.ndarray
795
796
797
798
799
800
801
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
802
803
        if dtype is None:
            dtype = self.dtype
804
805
        else:
            dtype = np.dtype(dtype)
806

807
808
        casted_x = x

809
        for ind, sp in enumerate(self.domain):
810
            casted_x = sp.pre_cast(casted_x,
811
812
813
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
814
815

        for ind, sp in enumerate(self.domain):
816
817
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
818

819
        return casted_x
csongor's avatar
csongor committed
820

Theo Steininger's avatar
Theo Steininger committed
821
    def _actual_cast(self, x, dtype=None):
822
        if isinstance(x, Field):
csongor's avatar
csongor committed
823
824
825
826
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
827
828
829
830
        if x is not None:
            return np.asarray(x, dtype=dtype).reshape(self.shape)
        else:
            return np.empty(self.shape, dtype=dtype)
csongor's avatar
csongor committed
831

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
832
    def copy(self, domain=None, dtype=None):
833
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
834

835
836
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
837
        able to define the domain and the dtype of the returned Field.
838
839
840
841
842

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
843

844
845
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
846

847
848
849
850
851
852
853
854
855
856
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
857

Theo Steininger's avatar
Theo Steininger committed
858
        copied_val = self.get_val(copy=True)
859
860
        new_field = self.copy_empty(
                                domain=domain,
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
861
                                dtype=dtype)
Theo Steininger's avatar
Theo Steininger committed
862
863
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
864

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
865
    def copy_empty(self, domain=None, dtype=None):
866
867
868
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
869
870
871
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
872
        to change the domain and the dtype of the returned Field.
Theo Steininger's avatar
Theo Steininger committed
873

874
875
876
877
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
878

879
880
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
881

882
883
884
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
885
            The output object.
886
887
888
889
890
891

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
892

Theo Steininger's avatar
Theo Steininger committed
893
894
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
895
        else:
Theo Steininger's avatar
Theo Steininger committed
896
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
897

Theo Steininger's avatar
Theo Steininger committed
898
899
900
901
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
902

Theo Steininger's avatar
Theo Steininger committed
903
904
        fast_copyable = True
        try:
Martin Reinecke's avatar
Martin Reinecke committed
905
            for i in range(len(self.domain)):
Theo Steininger's avatar
Theo Steininger committed
906
907
908
909
910
911
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
912
        if (fast_copyable and dtype == self.dtype):
Theo Steininger's avatar
Theo Steininger committed
913
914
            new_field = self._fast_copy_empty()
        else:
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
915
            new_field = Field(domain=domain, dtype=dtype)
Theo Steininger's avatar
Theo Steininger committed
916
        return new_field
csongor's avatar
csongor committed
917

Theo Steininger's avatar
Theo Steininger committed
918
919
920
921
922
923
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
Martin Reinecke's avatar
Martin Reinecke committed
924
        for key, value in list(self.__dict__.items()):
925
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
926
927
                new_field.__dict__[key] = value
            else:
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
928
                new_field.__dict__[key] = np.empty_like(self.val)
Theo Steininger's avatar
Theo Steininger committed
929
930
931
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
932
        """ Weights the pixels of `self` with their invidual pixel-volume.
933
934
935
936

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
937
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
938

939
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
940
941
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
942

Theo Steininger's avatar
Theo Steininger committed
943
944
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
945

946
947
948
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
949
            The weighted field.
950
951

        """
952
        if inplace:
csongor's avatar
csongor committed
953
954
955
956
            new_field = self
        else:
            new_field = self.copy_empty()

957
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
958

959
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
960
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
961
            spaces = list(range(len(self.domain)))
csongor's avatar
csongor committed
962

963
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
964
965
966
967
968
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
969
970

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
971
972
        return new_field

Martin Reinecke's avatar
Martin Reinecke committed
973
    def vdot(self, x=None, spaces=None, bare=False):
Theo Steininger's avatar
Theo Steininger committed
974
        """ Computes the volume-factor-aware dot product of 'self' with x.
Theo Steininger's avatar
Theo Steininger committed
975

976
977
978
        Parameters
        ----------
        x : Field
Theo Steininger's avatar
Theo Steininger committed
979
            The domain of x must contain `self.domain`
Theo Steininger's avatar
Theo Steininger committed
980

Theo Steininger's avatar
Theo Steininger committed
981
982
983
        spaces : tuple of ints
            If the domain of `self` and `x` are not the same, `spaces` specfies
            the mapping.
Theo Steininger's avatar
Theo Steininger committed
984

985
        bare : boolean
Theo Steininger's avatar
Theo Steininger committed
986
            If true, no volume factors will be included in the computation.
Theo Steininger's avatar
Theo Steininger committed
987

988
989
990
        Returns
        -------
        out : float, complex